Refine Your Search

Topic

Author

Search Results

Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Journal Article

The Impact of Spark Discharge Pattern on Flame Initiation in a Turbulent Lean and Dilute Mixture in a Pressurized Combustion Vessel

2013-04-08
2013-01-1627
An operational scheme with fuel-lean and exhaust gas dilution in spark-ignited engines increases thermal efficiency and decreases NOx emission, while these operations inherently induce combustion instability and thus large cycle-to-cycle variation in engine. In order to stabilize combustion variations, the development of an advanced ignition system is becoming critical. To quantify the impact of spark-ignition discharge, ignitability tests were conducted in an optically accessible combustion vessel to characterize the flame kernel development of lean methane-air mixture with CO₂ simulating exhaust diluent. A shrouded fan was used to generate turbulence in the vicinity of J-gap spark plug and a Variable Output Ignition System (VOIS) capable of producing a varied set of spark discharge patterns was developed and used as an ignition source. The main feature of the VOIS is to vary the secondary current during glow discharge including naturally decaying and truncated with multiple strikes.
Journal Article

Effects of 7, 9, and 10 psi Vapor Pressure Fuels on Multi-Day Diurnal Evaporative Emissions of Tier 2 and LEV II Vehicles

2013-04-08
2013-01-1057
In order to meet more stringent evaporative emissions requirements, multiple advancements in vehicle fuel system and carbon canister technologies have been made. Regardless of technological advancements, the vapor pressure of the fuel remains a vital property in controlling evaporative emissions. A series of tests were performed to explore the effects of vapor pressure on multiday diurnal evaporative emissions for 9 and 10 psi Reid Vapor Pressure (RVP) 10% ethanol (E10) gasoline-blend fuels, followed by tests with 7 psi RVP E10 gasoline on a subset of the same vehicles. A test procedure was developed to monitor evaporative emissions, canister loading profiles and breakthrough emissions for each of the fuels. A total of five vehicles were tested on all 3 fuels, blended to represent 7, 9, and 10 psi at sea level. Tests were run over 14 days using the United States (U.S.)
Technical Paper

EGR and Swirl Distribution Analysis Using Coupled 1D-3D CFD Simulation for a Turbocharged Heavy Duty Diesel Engine

2011-09-13
2011-01-2222
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel and code named "Scorpion" was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. A high pressure Exhaust Gas Recirculation (EGR) layout in combination with a Variable Geometry Turbine (VGT) is used to deliver cooled EGR for in-cylinder NOx reduction. The cylinder-to-cylinder variation of EGR and swirl ratio is tightly controlled by the careful design of the EGR mixer and intake system flow path to reduce variability of cylinder-out PM and NOx emissions. 3D-CFD studies were used to quickly screen several EGR mixer designs based on mixing efficiency and pressure drop considerations. To optimize the intake system, 1D-3D co-simulation methodology with AVL-FIRE and AVL-BOOST has been used to assess the cylinder-to-cylinder EGR distribution and dynamic swirl.
Journal Article

HC Traps for Gasoline and Ethanol Applications

2013-04-08
2013-01-1297
In-line hydrocarbon (HC) traps are not widely used to reduce HC emissions due to their limited durability, high platinum group metal (PGM) concentrations, complicated processing, and insufficient hydrocarbon (HC) retention temperatures required for efficient conversion by the three-way catalyst component. New trapping materials and system architectures were developed utilizing an engine dynamometer test equipped with dual Fourier Transform Infrared (FTIR) spectrometers for tracking the adsorption and desorption of various HC species during the light-off period. Parallel laboratory reactor studies were conducted which show that the new HC trap formulations extend the traditional adsorption processes (i.e., based on physic-sorption and/or adsorption at acid sites) to chemical reaction mechanisms resulting in oligomerized, dehydro-cyclization, and partial coke formation.
Technical Paper

Accessory Drive Belt Pulley Entry Friction Study and Belt Chirp Noise

1999-05-17
1999-01-1709
Accessory belt “chirp” noise is a major quality issue in the automotive and truck industry. Chirp noise control is often achieved by very tight pulley alignment, a guideline being .33 degree maximum belt entry angle into each grooved pulley. Occasionally belts will chirp at pulleys where the system alignment is this good or better. This study offers an explanation for such occurrences. This is a study to see if fundament groove side sticking theory correlates with the belt entry angle, and how the coefficient of friction relates to this entry angle. The study combines theory with lab data. In summary, the study fundamentally links the coefficient of friction of the belt to the belt chirp noise phenomenon, and allows the projection of a belt's general tendency to chirp to be predicted by the measurement of belt coefficient of friction on a test stand.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

2013-04-08
2013-01-0513
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Technical Paper

The Integrated Electric Lifestyle: The Economic and Environmental Benefits of an Efficient Home-Vehicle System

2013-04-08
2013-01-0495
In recent years, the residential and transportation sectors have made significant strides in reducing energy consumption, mainly by focusing efforts on low-hanging fruit in each sector independently. This independent viewpoint has been successful in the past because the user needs met and resources consumed in each sector have been clearly distinct. However, the trend towards vehicle electrification has blurred the boundary between the sectors. With both the home and vehicle now relying upon the same energy source, interactions between the systems can no longer be neglected. For example, when tiered utility pricing schemes are considered, the energy consumption of each system affects the cost of the other. In this paper, the authors present an integrated Home-Vehicle Simulation Model (HVSM), allowing the designer to take a holistic view.
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

2013-04-08
2013-01-1630
For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
Technical Paper

Stoichiometric Air-Fuel Ratio Control Analysis

1981-02-01
810274
A great deal of current automotive engineering effort involves the development of three-way catalyst-based emission control systems that seek to minimize fuel consumption while simultaneously meeting stringent exhaust emission standards. Mitigation of emissions is enhanced in a three-way catalyst system when the system air-fuel ratio (A/F) is in proximity to ideal burning or stoichiometry. This paper is concerned with extending methods used for determining engine calibrations to closed-loop systems with three-way catalysts. The paper presents a simulation model that employs experimentally obtained data to characterize the A/F control loop.
Technical Paper

Renewable Ethanol Use for Enabling High Load Clean Combustion in a Diesel Engine

2013-04-08
2013-01-0904
As a renewable energy source, the ethanol fuel was employed with a diesel fuel in this study to improve the cylinder charge homogeneity for high load operations, targeting on ultra-low nitrogen oxides (NOx) and smoke emissions. A light-duty diesel engine is configured to adapt intake port fuelling of the ethanol fuel while keeping all other original engine components intact. High load experiments are performed to investigate the combustion control and low emission enabling without sacrificing the high compression ratio (18.2:1). The intake boost, exhaust gas recirculation (EGR) and injection pressure are independently controlled, and thus their effects on combustion and emission characteristics of the high load operation are investigated individually. The low temperature combustion is accomplished at high engine load (16~17 bar IMEP) with regulation compatible NOx and soot emissions.
Technical Paper

A Modified Particle Swarm Optimization Algorithm with Design of Experiment Technique and a Perturbation Process

2015-04-14
2015-01-0422
Particle swarm optimization (PSO) is a relatively new stochastic optimization algorithm and has gained much attention in recent years because of its fast convergence speed and strong optimization ability. However, PSO suffers from premature convergence problem for quick losing of diversity. That is to say, if no particle discovers a new superiority position than its previous best location, PSO algorithm will fall into stagnation and output local optimum result. In order to improve the diversity of basic PSO, design of experiment technique is used to initialize the particle swarm in consideration of its space-filling property which guarantees covering the design space comprehensively. And the optimization procedure of PSO is divided into two stages, optimization stage and improving stage. In the optimization stage, the basic PSO initialized by Optimal Latin hypercube technique is conducted.
Technical Paper

Surrogate Diesel Fuel Models for Low Temperature Combustion

2013-04-08
2013-01-1092
Diesel fuels are complex mixtures of thousands of hydrocarbons. Since modeling their combustion characteristics with the inclusion of all hydrocarbon species is not feasible, a hybrid surrogate model approach is used in the present work to represent the physical and chemical properties of three different diesel fuels by using up to 13 and 4 separate hydrocarbon species, respectively. The surrogates are arrived at by matching their distillation profiles and important properties with the real fuel, while the chemistry surrogates are arrived at by using a Group Chemistry Representation (GCR) method wherein the hydrocarbon species in the physical property surrogates are grouped based on their chemical classes, and the chemistry of each class is represented by using up to two hydrocarbon species.
Technical Paper

Automotive Electronics in the 80’s

1980-08-01
800921
This paper discusses the growing use of electronics to provide improved fuel economy and control of engine emissions. The advantages of electronic engine controls are outlined, transducers utilized in a 1980 EEC III CFI application are described, and potential future expansion of electronic engine control is discussed.
Technical Paper

Application of a Mini-Dilution Tube in the Study of Fuel Effects on Stratified Charge Engine Emissions and Combustion

1981-10-01
811198
A mini-dilution tube to measure particulate emissions is described and results obtained in an application are presented. The application selected is a study of fuel effects on stratified charge engine emission and combustion characteristics. The mini-dilution tube was developed to provide a capability for particulate measurements with dynamometer engines. The device has been demonstrated to yield particulate mass results agreeing to within 10 percent of those with a full scale tunnel in steady state tests with diesel powered vehicles. A PROCO engine modified by incorporation of Torch Ignition was used in the study. Fuels were a wide cut gasoline, methanol and Indolene Clear gasoline. The engine was operated at a speed of 1250 rpm with an indicated mean effective pressure of 390 kPa. Spark timing, injection timing, EGR and equivalence ratio were varied.
Technical Paper

An Electrohydraulic Gas Sampling Valve with Application to Hydrocarbon Emissions Studies

1980-02-01
800045
Design and development of an electrohydraulically actuated gas sampling valve is presented for use in auto engine combustion studies. The valve was developed with particular emphasis on sampling within the vicinity of the wall quench layer, requiring minimum leakage rates to avoid sample contamination and flush seating of the valve-stem to valve-seat to avoid perturbations of the wall layer. Response in the range of 0.4 to 1.0 milliseconds is attainable for variable valve lifts measured between 0.01 to 0.30 mm while using a net sealing force of approximately 750N. Gas leakage rates ranged from 0.05% to 1% of the sample mass flow rate when sampling from estimated distances from the wall of 0.3 mm to 0.03 mm, respectively, at a cylinder pressure of 10 bar. The gas sampling valve is presently coupled to a gas chromatograph to measure concentrations of major species components.
Technical Paper

Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation, Part 2

1996-08-01
961712
A fuel cell (FC) powerplant is an electrochemical engine that converts fuel and an oxidant electrochemically into electric energy, water and other chemical byproducts. When hydrogen is used as the fuel, the only products of the electrochemical reactions are water and electric power. Other conventional and advanced powerplants for transportation, such as the internal combustion (IC) engine, the Diesel engine and others, are thermal combustion engines. The theoretical or thermodynamic efficiency of a fuel cell or electrochemical engine is much higher than the thermodynamic efficiency of a heat engine. The practical efficiency of a fuel cell is highest at partial load, whereas the practical efficiency of a heat engine is highest at maximum power. A survey is presented of the different fuel cell types and their characteristics. The proton-exchange-membrane (PEM) fuel cell is shown to be the best available fuel cell for transportation applications.
Technical Paper

Benchmarking of an Open Source CFD Process for Aerodynamics Prediction of Multiple Vehicle Types

2011-04-12
2011-01-0163
A benchmark study was conducted to assess the capability of an open source CFD based process to accurately simulate the physics of the flow field around various vehicle types. The ICON FOAMpro process was used to simulate the flow field of four baseline geometries of a Truck, CD-Car, B-Car and an SUV. Further studies were carried out to assess the effects of geometry variations on the predicted aerodynamic lift and drag. A Detached-Eddy Simulation (DES) approach was chosen for the benchmarks. In addition to aerodynamic lift and drag values, the results for surface pressure data, surface and wake flow fields were calculated. These results were compared with values obtained using Ford's existing CFD processes.
X