Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Evaluation of Various Viscous Criterion Computational Algorithms

1993-03-01
930100
The viscous criterion (V*C) has been proposed by biomechanics researchers as a generic biomechanical index for potential soft tissue injury. It is defined by the product of the velocity of deformation and the instantaneous compression of torso and abdomen. This criterion requires calculation and differentiation of measured torso/abdomen compression data. Various computational algorithms for calculating viscous criterion are reviewed and evaluated in this paper. These include methods developed by Wayne State University (WSU), NHTSA (DOT) and Ford. An evaluation has been conducted considering the accuracy of these algorithms with both theoretical and experimental data from dummy rib compressions obtained during a crash test. Based on these results, it is found that: V*C results depend on the scheme used in the computation process, the sampling rate and filtering of original raw data. The NHTSA method yields the lowest V*C value.
Technical Paper

Experimental Validation of Ellipsoid-to-Foam Contact Model

1994-03-01
940881
This report describes an experimental validation of an ellipsoid-to-foam contact model. A series of static foam tests was conducted using Side Impact Dummy rib cage, pelvis, upper leg, and wooden ellipsoids as impactors to validate a theoretical foam contact model previously developed. Predicted results of contact forces, calculated using the uni-axial stress-strain relationship and contact areas, yield good correlation with the test data. These studies used CFC foams and were conducted prior to switching to water-blown foam material development. The ellipsoid-to-foam contact model is being integrated into a MADYMO side impact model. The MADYMO/foam simulation model can then be used to help evaluate design variable tradeoffs (e.g., door thickness vs. body side structures and foam padding requirement vs. interior package) thereby reducing the current dependency on testing, bolster development time, and cost.
Technical Paper

Constitutive Modeling of Energy Absorbing Foams

1994-03-01
940880
This paper deals with the constitutive modeling of energy absorbing foams. Two mechanical-analog hyper-elastoplastic models are constructed for simulating the characteristics of semi-rigid and rigid foams. These piecewise linear models are suitable for describing the loading as well as the unloading behavior of material. The result from quasi-static compression tests are used to determine the three parameters of the models. It is observed that the models can be used in the prediction of stress-strain behavior as well as the energy absorption characteristics.
Technical Paper

Development of Foam Models as Applications to Vehicle Interior

1995-11-01
952733
Various foam models are developed using LS-DYNA3D and the model predictions were validated against experiments. Dynamic and static stress-strain relations are obtained experimentally for crushable and resilient foam materials and used as inputs to the finite element analyses. Numerous simulations were carried out for foams subjected to different loading conditions including static compression and indentation, and dynamic impacts with a rigid featureless and a rigid spherical headform. Comparisons of the results obtained from different foam models with test data show appropriate correlations for all the cases studied. Parametric studies of the effects of tensile properties of foam material and the interface parameters on foam performance are also presented.
Technical Paper

High Strain-Rate Tensile Testing of Door Trim Materials

1997-02-24
971064
The objective of this study was to determine dynamic tensile characteristics of various door trim materials and to recommend a practical test methodology. In this study, Polypropylene (PP) and Acrilonitryl Butadiene Styrene (ABS) door trim materials were tested. Slow speed (quasi-static-0.021 mm/s) and high speed tests were conducted on a closed loop servo-hydraulic MTS system. The maximum stress of these materials increased from quasi-static to dynamic test conditions (as much as 100%). The dynamic stiffness of PP increased two times from quasi-static tests. No significant change in stiffness was observed for ABS during quasi-static and dynamic tests at different strain-rates. Quasi-static and medium strain-rate (10-20 mm/mm/s) tests may be adequate in providing data for characterizing the dynamic behavior of trim materials for CAE applications. Strain gages can be used to measure the quasi-static and in some cases, dynamic strain.
X