Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Knee Bolster Analysis of a Thermoplastic Instrument Panel with Damage Mechanics Material Law

Thermoplastics and composites are increasingly becoming popular among automotive design engineers because of their high specific stiffness and flexibility in manufacturing. While plastics like composites are orthotropic, unfilled thermoplastics like ABS Cycolac may be considered isotropic as they show little variation in properties between the flow direction and the direction transverse to the flow. However, this assumption is not enough to treat the latter as metals in finite element analysis. Metals like mild steel, offer considerable ductility, while thermoplastics show limited ductility and begin to fracture with several cracks appearing on the surface. Therefore, in the case of such plastics, it is important to consider the degradation of material properties in nonlinear finite element analysis using Damage Mechanics material law.
Technical Paper

Finite Element Analysis of Low-Density High-Hysteresis Foam Materials and the Application in the Automotive Industry

A new foam material model has been developed incorporating both theoretical formulation for low-density high-hysteresis foam and test data. Detailed formulation is presented. The finite element analysis of the resilient bumper and the IP head impact are also discussed. A good correlation is concluded by comparing the results from the tests and the FEA simulations.