Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Comparative Analysis of Different Energy Absorbing Materials for Interior Head Impact

1995-02-01
950332
Various foam models are developed using LS-DYNA3D and validated against experiments. Dynamic and static stress-strain relations are obtained experimentally for crushable and resilient foam materials and used as inputs to the finite element analyses. Comparisons of the results obtained from different foam models with test data show excellent correlations for all the cases studied.
Technical Paper

Development of Foam Models as Applications to Vehicle Interior

1995-11-01
952733
Various foam models are developed using LS-DYNA3D and the model predictions were validated against experiments. Dynamic and static stress-strain relations are obtained experimentally for crushable and resilient foam materials and used as inputs to the finite element analyses. Numerous simulations were carried out for foams subjected to different loading conditions including static compression and indentation, and dynamic impacts with a rigid featureless and a rigid spherical headform. Comparisons of the results obtained from different foam models with test data show appropriate correlations for all the cases studied. Parametric studies of the effects of tensile properties of foam material and the interface parameters on foam performance are also presented.
Technical Paper

Normalization of Head Impact Test Data to 24 km/h

1997-02-24
970389
This paper provides a methodology for adjustment of off-speed head impact test data to the required 24.14 km/h for interior head impact. The “Normalization Process” utilizes the Generic Waveform Concept for its basic foundation. Predicted results from FE Head Impact Simulation Model were used to validate the Normalization Process. It is recommended that Normalization should be applied to cases where impact velocities are within ±0.8 km/h speed difference. In general, Normalizing down-speed (from 24.94 to 24.14 km/h) is preferred over Normalizing up-speed (23.33 to 24.14 km/h). One must always check for potentially severe “bottom-out” condition by examining the pulse shape for any abrupt peaks in headform deceleration. The Normalization Process should not be applied to “glancing” impacts in which the impact and rebound vectors are not colinear.
X