Refine Your Search

Topic

Author

Search Results

Video

The Future (& Past) of Electrified Vehicles

2011-11-04
The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.
Video

Future Development of EcoBoost Technology

2012-05-10
Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
Video

Ford: Driving Electric Car Efficiency

2012-03-29
The Focus Electric is Ford�s first full-featured 5 passenger battery electric vehicle. The engineering team set our sights on achieving best-in-class function and efficiency and was successful with an EPA certified 1XX MPGe and range XXX then the facing competition allowing for a slightly lower capacity battery pack and larger vehicle without customer trade-off. We briefly overview the engineering method and technologies employed to deliver the results as well as sharing some of the functional challenges unique to this type of vehicle. Presenter Charles Gray, Ford Motor Co.
Technical Paper

Identification of the Optimum Vehicle Class for the Application of 42v Integrated Starter Generator

2000-11-01
2000-01-C073
Today nearly all automotive manufacturers are developing motor-generator systems for improved fuel economy by implementing idling-stop and other power train enhancements. It is said that powertrain technology has always pioneered the development of automotive electronic control throughout history. The integrated starter generator (ISG) promises to expand the scope of powertrain control further through fuel economy improvement, emissions reduction, longitudinal vehicle dynamics improvement and customer feature enhancements. At the present time the cost imposed by usage of an ISG system is very high due mainly to its need for a power optimized 42V battery and high power electronics. This paper takes a critical look at the vehicle benefits attributable to ISG and its implementation costs over various vehicle classes.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

The Development of Ford's Natural Gas Powered Ranger

1985-11-11
852277
Operation of America's first factory built vehicles modified to operate on natural gas began in April, 1984, when Ford Motor Company delivered the first of 27 specially equipped 1984 Ranger pickup trucks to 25 major utility and natural gas related companies in the United States and Canada. In addition to the fuel system, modifications to these test vehicles include a 12.8:1 compression ratio engine and a unique distributor calibration to provide performance similar to the gasoline powered vehicle. The fuel tanks are significantly more expensive than gasoline tanks and remain one of the major cost issues with a natural gas powered vehicle. There are however, no unresolvable technological issues that would prevent motor vehicles from operating economically and efficiently on natural gas.
Technical Paper

Design and Analysis of the Ford GT Spaceframe

2004-03-08
2004-01-1255
The Ford GT is a high performance sports car designed to compete with the best that the global automotive industry has to offer. A critical enabler for the performance that a vehicle in this class must achieve is the stiffness and response of the frame structure to the numerous load inputs from the suspension, powertrain and occupants. The process of designing the Ford GT spaceframe started with a number of constraints and performance targets derived through vehicle dynamics CAE modeling, crash performance requirements, competitive benchmarking and the requirement to maintain the unique styling of the GT40 concept car. To achieve these goals, an aluminum spaceframe was designed incorporating 35 different extrusion cross-sections, 5 complex castings, 4 smaller node castings and numerous aluminum stampings.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
Technical Paper

Methodology for Developing and Validating Air Brake Tubes for Commercial Vehicles

2012-10-02
2012-36-0272
The pneumatic air brake system for heavy commercial trucks is composed by a large number of components, aiming its proper work and compliance with rigorous criteria of vehicular safety. One of those components, present along the whole vehicle, is the air brake tube, ducts which feed valves and reservoirs with compressed air, carrying signals for acting or releasing the brake system. In 2011, due to a lack of butadiene in a global scale, the manufacturing of these tubes was compromised; as this is an important raw material present on the polymer used so far, PA12. This article introduces the methodology of selecting, developing and validating in vehicle an alternative polymer for this application. For this purpose, acceptance criteria have been established through global material specifications, as well as bench tests and vehicular validation requirements.
Technical Paper

A General Formulation for Topology Optimization

1994-11-01
942256
Topology optimization is used for obtaining the best layout of vehicle structural components to achieve predetermined performance goals. Unlike the most common approach which uses the optimality criteria methods, the topology design problem is formulated as a general optimization problem and is solved by the mathematical programming method. One of the major advantages of this approach is its generality; thus it can solve various problems, e.g. multi-objective and multi-constraint problems. The MSC/NASTRAN finite element code is employed for response analyses. Two automotive examples including a simplified truck frame and a truck frame crossmember are presented.
Technical Paper

Diesel Fuel Delivery Module for Light Truck Applications

1993-11-01
932980
This paper reviews the design and development of a self-filling, in-tank fuel system reservoir intended for use in diesel engine vehicle applications. This new idea eliminates engine driveability concerns (stumbles, hesitations, stalling, etc.) associated with an inconsistent supply of fuel from the fuel tank to the engine, particularly during sudden vehicle maneuvers and with low fuel tank conditions.
Technical Paper

Impact of Computer Aided Engineering on Ford Motor Company Light Truck Cooling Design and Development Processes

1993-11-01
932977
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

A Rule Based Design Process and an Evolutionary Architecture for the Vehicle Power Supply

1993-10-01
932864
This paper begins with a comparison of the automotive power supply and loads in the early 1950's (near the end of the six-volt era) to the modern counterpart in the early 1990's (possibly near the end of the 12-volt era). A typical power supply specification sheet is developed based on the in-vehicle performance characteristics. From this summary, two attributes are noted: first, the system voltage is not very stable and second, transient protection is limited. With this awareness and the knowledge that the power supply of the future will need architectural change, a review of the design assumptions using a total system view and a long term outlook is advanced. Using a rule based design process and employing available technology to enhance the power system architecture, a number of elements are proposed for consideration in new designs.
Technical Paper

A New Approach for Weight Reduction in Truck Frame Design

1993-11-01
933037
A new, systematic, sensitivity based design process for weight reduction is presented. Traditionally, a trial and error method is used when a design fails to meet the weight and the design criteria, which often conflict. This old approach not only is time and cost consuming but also does not provide insight into structural behavior. This proposed process uses state-of-the-art technologies such as design sensitivity analysis, numerical optimization, graphical user interface, etc. It handles multi-discipline design criteria simultaneously and provides design engineers insight into structural responses for frequency, durability, and stiffness concerns and a means for systematic weight reduction and quality improvement. The new design process has been applied for the weight reduction of advanced truck frame designs. Results show that a significant weight savings has been achieved while all design criteria are met.
Technical Paper

A Simplified Approach to Quantifying Gear Rattle Noise Using Envelope Analysis

2011-05-17
2011-01-1584
The present work discusses an objective test and analysis method developed to quickly quantify steering gear rattle noise heard in a vehicle. Utilizing envelope analysis on the time history data of the rattle signal, the resulting method is simple, fast, practical and yields a single-valued metric which correlates well to subjective measures of rattle noise. In contrast to many other rattle analysis methods, the approach discussed here is completed in the time domain. As applied to rattle noise produced by automotive electric steering systems, the metric produced with this analysis method correlates well with subjective appraisals of vehicle-level rattle noise performance. Lastly, this method can also be extended to rattle measurements at the component and subcomponent level.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Technical Paper

Influence of ride frequency balance in sub limit vehicle stability

2010-10-06
2010-36-0250
Current road vehicles have tendency of use softer suspension springs to improve ride comfort, but as a moving device with suspension system, vehicles have other parts that can affect attributes for comfort perception, and is necessary the correct definition of which one should be modified to address the comfort issue and avoid impact in attributes for stability. Usually springs are not the main responsible for bad comfort behavior, but shock absorbers and bushings are. A typical passenger car shows a wide possibility of loads carriage and how to set up correctly the suspensions considering its tradeoffs and brand DNA is the main issue.
Technical Paper

Challenges of adopting new Lighting Technologies on Emerging Markets

2010-10-06
2010-36-0051
Emerging markets and South America in particular, have quickly become the cornerstone of major automotive companies in recent years. Currently, all major players are located in the region, and this has created an excellent environment for developing market-tailored products. The trend in the design and technology community is one which allows the final customer to improve his own safety and reduce overall power consumption. Throughout the entire automotive industry, the lighting system has always had a very important role to play during its long history. In the past 50 years, vehicular lighting has achieved an important status due to its close relationship by enhancing passenger and vehicle security. In addition, there is still room for improvement in the halogen front lighting system. Particularly, it is of utmost importance to highlight the implementation of NEO (new efficient optics).
Technical Paper

Engine Reliability Through Infant Mortality Mitigation: Literature Review

2010-10-06
2010-36-0049
Internal combustion engines are designed to meet the high power, low fuel consumption and also, low exhaust emissions. The engine running conditions is valid the concept that, the expectative is very high because of the variety of operating conditions like cold start, frequent start and stop, time high speed and load, traditional gasoline, mix of gasoline and alcohol and finally, alcohol fuel only. Considering such demand, this paper explains the relationship between the reliability bathtub curve, specifically the "Infant Mortality" portion. The bathtub curve describes failure rate as a function of time. The "Infant Mortality" portion of the curve is the initial section for which the failure (death) rate decreases with time (age). In general, these problems are related to manufacturing aspects or poor design definitions. With development of technology, hard failures, the ones that cause dependability, are becoming rare.
Technical Paper

Ford Motor Companys' new Torqshift 6 Automatic Transmission for Super Duty F250-F550 Truck

2010-04-12
2010-01-0859
Ford developed the 6R140 TorqShift six-speed transmission for the Ford F-series SuperDuty trucks. The 6R140 transmission is specifically designed to manage the increased torque produced by the 6.7-liter Power Stroke V-8 turbocharged diesel engine. It is also matched with the 6.2-liter V-8 gasoline engine. By design, the new 6R140 transmission seamlessly delivers the enormous low-rpm torque produced by the new diesel engine and efficiently manages the higher rpm of the new gasoline engine.
X