Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-11-15
This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.
Video

Future Development of EcoBoost Technology

2012-05-10
Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
Technical Paper

Aluminum Rail Rivet and Steel Rail Weld DOE and CAE Studies for NVH

2001-04-30
2001-01-1608
Vehicle body with aluminum riveted construction instead of steel welded one will be a big challenge to NVH. In this paper, aluminum and steel rails with the dimensions similar to the rear rail portion of a typical mid-size sedan were fabricated. Rivets were used to assemble the aluminum rails while welds were used to assemble the steel rails. Adhesive, rivet/weld spacing, and rivet/weld location were the three major factors to be studied and their impact on NVH were investigated. The DOE matrix was developed using these three major factors. Modal tests were performed on those rails according to the DOE matrix. The FEA models corresponding to the hardware were built. CAE modal analysis were performed and compared with test data. The current in-house CAE modeling techniques for spot weld and adhesive were evaluated and validated with test data.
Technical Paper

Sound Package Design for a Convertible by Statistical Energy Analysis

2001-04-30
2001-01-1623
The application of SEA (Statistical Energy Analysis) to the sound package design for a convertible is presented. SEA modeling was used optimize the soft-top construction and the acoustic insulation in the top-stack area (where the soft-top is stored) which were shown to be important transmission paths for tire noise. Correlation between measurement data and predictions from the SEA model is presented and good agreement shown. It is concluded that SEA can be applied to determine the special sound package requirements for convertible vehicles.
Technical Paper

Robust Analysis of Vehicle Suspension System Uncertainty

2001-04-30
2001-01-1582
The paper presents the systematic approaches toward robust stability analysis of H2/H∞ controlled active suspension systems. The computational algorithms for the structured singular value μ are the main features of the work with an emphasis on quantifying the effects of uncertainty of the systems. The representation of vehicle parameter uncertainties is given in detail. The robustness test is subsequently done based on a quarter vehicle model. The results have showed that the H∞ controller is the best one on both robust stability and robust performance.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

2001-04-30
2001-01-1505
Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

2001-04-30
2001-01-1561
The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
Technical Paper

Frictional and Acoustic Behavior of Automotive Interior Polymeric Material Pairs Under Environmental Conditions

2001-04-30
2001-01-1550
As automotive manufacturers continue to increase their use of thermoplastics for interior and exterior components, there is a likelihood of squeaks due to material contacts. To address this issue, Ford's Body Chassis NVH Squeak and Rattle Prevention Engineering Department has developed a tester that can measure friction, and any accompanying audible sound, as a function of sliding velocity, normal load, surface roughness, and environmental factors. The Ford team has been using the tester to address manufacturing plant issues and to develop a database of polymeric material pairings that will be used as a guide for current and future designs to eliminate potential noise concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, we are in the process of developing an analytical model which will be a tool to predict frictional behavior.
Technical Paper

Laminate Dash Ford Taurus Noise and Vibration Performance

2001-04-30
2001-01-1535
Mastic material, constrained or non-constrained with doublers, is the traditional method in adding vibrational damping to a steel structure with the goal of reducing panel vibration and radiated sound. With the use of laminated vibration damped steel (LVDS), Ford has been able to reduce the dash panel vibration and optimize sound package design for powertrain noise attenuation. These NVH benefits are presented as the result of a study completed with a laminated dash on a Ford Taurus.
Technical Paper

A New FEA Method for the Evaluation of a Body Joint

2001-03-05
2001-01-0758
A finite element analysis method has been developed to assess the design of an automobile body joint. The concept of the coefficient of joint stiffness and the force distribution ratio are proposed accordingly. The coefficient of joint stiffness reveals whether a joint is stiff enough compared to its joining components. In addition, these parameters can be used to estimate the potential and the effectiveness for any further improvement of the joint design. The modeling and analysis of the proposed process are robust. The coefficient of joint stiffness could be further developed to serve as the joint design target.
Technical Paper

Theoretical Evaluation of the Requirements of the 1999 Advanced Airbag SNPRM – Part One: Design Space Constraint Analysis

2001-03-05
2001-01-0165
In the 1999 Supplemental Notice for Proposed Rulemaking (SNPRM) for Advanced Airbags, the National Highway Traffic Safety Administration (NHTSA) sought comments on the maximum speed at which the high-speed, unbelted occupant test suite will be conducted, i.e., 48 kph vs. 40 kph. To help address this question, an analysis of constraints was performed via extensive mathematical modeling of a theoretical restraint system. First, math models (correlated with several existing physical tests) were used to predict the occupant responses associated with 336 different theoretical dual-stage driver airbag designs subjected to six specific Regulated and non-Regulated tests.
Technical Paper

Correlating Stressed Environmental Testing of Structural Composites to Service

2001-03-05
2001-01-0094
A compact in-situ tensile stress fixture was designed for the study of the combined effects of stress and automotive environments on structural glass fiber-reinforced composite materials. With this fixture, a standardized 300 hour laboratory screening test was developed to compare the residual property loss of composite materials due to concurrent exposure to stress and environment. It is of great importance that the data gathered in the laboratory have correlation to on-vehicle (in-service) performance, and that both lab and real world data be taken with a test system (in-situ test fixtures) capable of providing accurate and consistent results under either test condition.
Technical Paper

Eliminating Piston Slap through a Design for Robustness CAE Approach

2003-05-05
2003-01-1728
Piston slap is a problem that plagues many engines. One of the most difficult aspects of designing to eliminate piston slap is that slight differences in operating conditions and in part geometries from build to build can create large differences in the magnitude of piston slap. In this paper we will describe a design for robustness CAE approach to eliminating piston slap. This approach considers the variations of the significant control factors in the design, e.g. piston pin offset, piston skirt design, etc. as well as the variation in the noise factors the system is subjected to, e.g. assembly clearance, skirt collapse, peak cylinder pressure, cylinder pressure rise rate, and location of peak cylinder pressure. Using analytical knowledge about how these various factors impact the generation of piston slap, a piston design for low levels of piston slap can be determined that is robust to the various noise factors.
Technical Paper

Finite Element Vibration Studies of As-Installed Power Steering Pumps

2003-05-05
2003-01-1671
Pump whine as well as other NVH issues related to power steering system can become customer concerns at the vehicle level. In order to avoid that, proposed treatment of the pump structure and its installation on the engine should be performed. This is particularly important because most vane pumps have a wide range of excitation that can reach 1000 Hz (30th order @ 6000 rpm). This requires maximizing the ‘as installed’ frequencies of the pump to avoid coincidence with the engine and other FEAD harmonics.
Technical Paper

Bending Fatigue Behavior of Carburized Gear Steels: Planetary Gear Test Development and Evaluation

1996-02-01
960978
Little information is available concerning the bending fatigue behavior of helical gears with tall thin teeth and high contact ratios, particularly for planetary pinions which are subjected to fully reversed loading. The most common methods to acquire gear bending fatigue data are either through a four-square recirculating power arrangement or unidirectional single tooth bending experiments on standardized spur gears. There are some advantages to these test methods, but they generally do not represent actual operating conditions of a planetary gear environment. The purpose of this study was to develop a bending fatigue test for planetary pinions in automatic transmissions which would better represent actual operating conditions. The new testing procedure was used to evaluate the bending fatigue behavior of three gear steel/processing combinations. The results from the planetary gear testing is compared with laboratory four-point bending experiments.
Technical Paper

Friction Induced Paint Damage: The Role of Coating Attributes

1996-02-01
960914
The recent inclusion of painted plastic fascias/bumpers into automotive applications has necessitated the evaluation of potential in-service damagability. One failure mode that has been identified, that of friction-induced paint/substrate damage, has been simulated in a laboratory environment. Our goal was to evaluate the effects of coating attributes, both thermal and mechanical, on subsequent performance of painted thermoplastic olefin (TPO) materials. It was determined that the most significant parameters in the paint which contributed to damage were the glass transition temperature, the secant modulus at break, and the static coefficient of friction. This paper will discuss techniques and results used to reach these findings.
Technical Paper

Development of the Ford QVM CNG Bi-Fuel 4.9L F-Series Pickup Truck

1996-02-01
960850
A bi-fuel (Compressed Natural Gas [CNG] and gasoline) pickup truck has been developed using the Ford Alternative Fuel Qualified Vehicle Modifier (QVM) process. The base vehicle's 4.9L engine has been specially modified for improved durability on gaseous fuels. The base vehicle's configuration has been designed for conversion to bi-fuel CNG operation. A complete CNG fuel system has been designed and qualified, including fuel tanks, fuel system, and electrical interface. The completed vehicle has been safety and emission certified, demonstrating CARB Low Emission Vehicle (LEV) emissions in MY95. This paper details the design objectives, development process, CNG components, and integration of the two fuel systems.
Technical Paper

Upfront Durability CAE Analysis for Automotive Sheet Metal Structures

1996-02-01
961053
Automotive product development requires higher degree of quality upfront engineering, faster CAE turn-around, and integration with other functional requirements. Prediction of potential durability concerns using analytical methods for sheet metal structures subjected to road loads and other customer uses has become very important. A process has been developed to provide design direction based upon peak loads, simultaneous peak loads, and vehicle program analytical or measured loads. It identifies critical loads at each input location and load sets for multiple input locations, filters load time histories, selects critical areas and analyzes for fatigue life. Several case studies have been completed. The results show that the variations are consistent with the accuracies in finite element analysis, road load data acquisition, and fatigue calculation methods.
Technical Paper

Predictions of In-Cylinder Tumble Flow and Combustion in SI Engines with a Quasi-Dimensional Model

1996-10-01
961962
Tumble flow has been recognized as an important and positive enhancement of combustion for SI engines. Tumble flow modeling with quasi-dimensional models is difficult because of the transient nature of tumble vortex, compared with swirl flows. Although multi-dimensional models have obtained plenty of attention recently in engine research, quasi-dimensional SI engine models will continue to dominate industrial applications in the near future. In the present research, a bulk flow model has been developed for tumble flows based on angular momentum conservation. Its effect on turbulence was then modeled using a Two-Equation Model (k-ε Model). A methodology has also been developed to use particle tracking velocimetry (PTV) measurement to calibrate the quasi-dimensional bulk flow model at engine BDC to model tumble vortex and tumble-generated turbulence. The Entrainment Combustion Model was used for combustion modeling.
Technical Paper

Finite Element Prediction of Backlite Molding Squeak Noise

1997-02-24
970584
The backlite molding squeak noise is caused by the stick-slip type of friction between the window molding and the body panel. To predict if the molding would squeak a finite element analysis technique which uses the nonlinear explicit code LS-DYNA3D has been developed. The three dimensional finite element simulation technique is based on the threshold displacement velocity spectrum and the relative movement of the window glass with respect to the body panel. Comparisons between FEA analysis and tests are also presented in this paper.
X