Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-11-15
This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.
Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Journal Article

Extending Tensile Curves beyond Uniform Elongation Using Digital Image Correlation: Capability Analysis

2010-04-12
2010-01-0981
A uniaxial stress-strain curve obtained from a conventional tensile test is only valid up to the point of uniform elongation, beyond which a diffuse neck begins to develop, followed by localized necking and eventual fracture. However Finite Element Analysis for sheet metal forming requires an effective stress-strain curve that extends well beyond the diffuse necking point. Such an extension is usually accomplished by analytical curve fitting and extrapolation. Recent advancement in Digital Image Correlation (DIC) techniques allows direct measurement of full-range stress-strain curves by continuously analyzing the deformation within the diffuse neck zone until the material ruptures. However the stress-strain curve obtained this way is still approximate in nature. Its accuracy depends on the specimen size, the gage size for analysis, and the material response itself.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Vehicle Sideslip Angle EKF Estimator based on Nonlinear Vehicle Dynamics Model and Stochastic Tire Forces Modeling

2014-04-01
2014-01-0144
This paper presents the extended Kalman filter-based sideslip angle estimator design using a nonlinear 5DoF single-track vehicle dynamics model with stochastic modeling of tire forces. Lumped front and rear tire forces have been modeled as first-order random walk state variables. The proposed estimator is primarily designed for vehicle sideslip angle estimation; however it can also be used for estimation of tire forces and cornering stiffness. This estimator design does not rely on linearization of the tire force characteristics, it is robust against the variations of the tire parameters, and does not require the information on coefficient of friction. The estimator performance has been first analyzed by means of computer simulations using the 10DoF two-track vehicle dynamics model and underlying magic formula tire model, and then experimentally validated by using data sets recorded on a test vehicle.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Real-time Determination of Driver's Driving Behavior during Car Following

2015-04-14
2015-01-0297
This paper proposes an approach that characterizes a driver's driving behavior and style in real-time during car-following drives. It uses an online learning of the evolving Takagi-Sugeno fuzzy model combined with the Markov model. The inputs fed into the proposed algorithm are from the measured signals of on-board sensors equipped with current vehicles, including the relative distance sensors for Adaptive Cruise Control feature and the accelerometer for Electronic Stability Control feature. The approach is verified using data collected using a test vehicle from several car-following test trips. The effectiveness of the proposed approach has been shown in the paper.
Journal Article

An Iterative Application of Multi-Disciplinary Optimization for Vehicle Body Weight Reduction Based on 2015 Mustang Product Development

2015-04-14
2015-01-0470
Designing a vehicle body involves meeting numerous performance requirements related to different attributes such as NVH, Durability, Safety, and others. Multi-Disciplinary Optimization (MDO) is an efficient way to develop a design that optimizes vehicle performance while minimizing the weight. Since a body design evolves in course of the product development cycle, it is essential to repeat the MDO process several times as a design matures and more accurate data become available. This paper presents a real life application of the MDO process to reduce weight while optimizing performance over the design cycle of the 2015 Mustang. The paper discusses the timing and results of the applied Multi-Disciplinary Optimization process. The attributes considered during optimization include Safety, Durability and Body NVH. Several iterations of MDO have been performed at different milestones in the design cycle leading to a significant weight reduction of the already optimized design by over 16kg.
Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Journal Article

Instrumentation, Acquisition and Data Processing Requirements for Accurate Combustion Noise Measurements

2015-06-15
2015-01-2284
The higher cylinder peak pressure and pressure rise rate of modern diesel and gasoline fueled engines tend to increase combustion noise while customers demand lower noise. The multiple degrees of freedom in engine control and calibration mean there is more scope to influence combustion noise but this must first be measured before it can be balanced with other attributes. An efficient means to realize this is to calculate combustion noise from the in-cylinder pressure measurements that are routinely acquired as part of the engine development process. This publication reviews the techniques required to ensure accurate and precise combustion noise measurements. First, the dynamic range must be maximized by using an analogue to digital converter with sufficient number of bits and selecting an appropriate range in the test equipment.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Material Selection During Early Design Phase Using Simplified Models

2011-04-12
2011-01-0526
Optimal material selection for a part becomes quite challenging with dynamically changing data from various sources. Multiple manufacturing locations with varying supplier capabilities add to the complexity. There is need to balance product attribute requirements with manufacturing feasibility, cost, sourcing, and vehicle program strategies. The sequential consideration of product attribute, manufacturing, and sourcing aspects tends to result in design churns. Ford R&A is developing a web based material recommender tool to help engineers with material selection integrating sourcing, manufacturing, and design considerations. This tool is designed to filter the list of materials for a specific part and provide a prioritized list of materials; and allow engineers to do weight and cost trade-off studies. The initial implementation of this material recommender tool employs simplified analytical calculators for evaluation of structural performance metrics of parts.
Journal Article

Brake Dynamometer Test Variability Part 2- Description of the Influencing Factors

2011-09-18
2011-01-2374
The ISO TC22/SWG2 - Brake Lining Committee established a task force to determine and analyze root causes for variability during dynamometer brake performance testing. SAE paper 2010-01-1697 “Brake Dynamometer Test Variability - Analysis of Root Causes” [1] presents the findings from the phases 1 and 2 of the “Test Variability Project.” The task force was created to address the issue of test variability and to establish possible ways to improve test-to-test and lab-to-lab correlation. This paper presents the findings from phase 3 of this effort-description of factors influencing test variability based on DOE study. This phase concentrated on both qualitative and quantitative description of the factors influencing friction coefficient measurements during dynamometer testing.
Journal Article

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-04-12
2011-01-0981
This paper proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach.
Journal Article

Fracture Modeling Inputs for a Human Body Model via Inference from a Risk Curve: Application for Skull Fracture Potential

2012-04-16
2012-01-0562
A three-step process was developed to estimate fracture criteria for a human body model. The process was illustrated via example wherein skull fracture criteria were estimated for the Ford Human Body Model (FHBM)~a finite element model of a mid-sized human male. The studied loading condition was anterior-to-posterior, blunt (circular/planar) cylinder impact to the frontal bone. In Step 1, a conditional reference risk curve was derived via statistical analysis of the tests involving fractures in a recently reported dataset (Cormier et al., 2011a). Therein, Cormier et al., authors reported results for anterior-to-posterior dynamic loading of the frontal bone of rigidly supported heads of male post mortem human subjects, and fracture forces were measured in 22 cases. In Step 2, the FHBM head was used to conduct some underlying model validations relative to the Cormier tests. The model-based Force-at-Peak Stress was found to approximate the test-based Fracture Force.
Journal Article

Hydrogen DI Dual Zone Combustion System

2013-04-08
2013-01-0230
Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
Journal Article

Considerations in HMI Design of a Reverse Braking Assist (RBA) System

2013-04-08
2013-01-0720
The Reverse Braking Assist (RBA) feature is designed to automatically activate full braking in a backing vehicle. When this feature activates, a backing vehicle is suddenly stopped or may slide to a stop. During this process, an understanding of the driver's behavior may be useful in the design of an appropriate human-machine-interface (HMI) for the RBA. Several experimental studies were done to examine driver behavior in response to an unexpected and automatic braking event while backing [1]. Two of these studies are reported in this paper. A 7-passenger Crossover Utility Vehicle was fitted with a rear-view camera, a center-stack mounted LCD screen, and ancillary recording devices. In the first study, an object was suddenly placed in the path of a backing vehicle. The backing vehicle came to a sudden and complete stop. The visual image of the backing path on the LCD prominently showed that an obstacle was present in the backing path of the vehicle.
Technical Paper

High Speed Fuel Injection System for 2-Stroke D.I. Gasoline Engine

1991-02-01
910666
Two-stroke gasoline engines are known to benefit from using in-cylinder fuel injection which improves their ability to meet the strict fuel economy and exhaust emissions requirements. A conventional method of in-cylinder fuel injection involves application of plunger-type positive displacement pumps. Two-stroke engines are usually smaller and lighter than their 4-stroke counterparts of equal power and need a pump that should also be small and light and, preferably, simple in construction. Because a 2-stroke engine fires every crankshaft revolution, its fuel injection pump must run at crankshaft speed (twice the speed of a 4-stroke engine pump). An electronically controlled fuel injection system has been designed to satisfy the needs of a small automotive 2-stroke engine capable of running at speeds of up to 6000 rpm.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Journal Article

An Adaptive Proportional Integral Control of a Urea Selective Catalytic Reduction System based on System Identification Models

2010-04-12
2010-01-1174
For urea Selective Catalytic Reduction (SCR) systems, adaptive control is of interest to provide a capability of maintaining high NOx conversion efficiency and low ammonia slip in the presence of uncertainties in the system. In this paper, the dynamics of the urea SCR system are represented by a control-oriented model which is based on a linear transfer function, with parameters dependent on engine operating conditions. The parameters are identified from input-output data generated by a high fidelity full chemistry model of the urea SCR system. The use of the full chemistry model facilitated the representation of the dynamics of stored ammonia (not a directly measurable parameter) as well as post SCR NOx and ammonia slip. A closed-loop Proportional-plus-Integral (PI) controller was first designed using the estimate of stored ammonia as a feedback signal.
X