Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Research Application of DFSS: Study of the Impact of Accelerated Aging and Recovery on Low-Rh Three-Way Catalyst Activity for Catalyst Monitoring

2010-04-12
2010-01-0702
Robust on-board diagnosis of emission catalyst performance requires the development of artificially damaged "threshold" catalysts that accurately mimic the performance of damaged catalysts in customer use. The threshold catalysts are used by emissions calibrators to determine fore-aft exhaust oxygen sensor responses that indicate catalyst failure. Rather than rely on traditional trial-and-error processes to generate threshold catalysts, we have used a DFSS (Design For Six-Sigma) approach that explores, at a research level, the relationship between oxygen storage capacity (OSC) of the catalyst (i.e., the fundamental property dictating the response of the aft oxygen sensor) and key process input variables: high-temperature exposure, phosphorus poisoning, and catalyst "recovery."
Technical Paper

A Review of the Dual EGO Sensor Method for OBD-II Catalyst Efficiency Monitoring

1994-10-01
942057
This paper provides an overview of the dual EGO sensor method for OBD-II catalyst efficiency monitoring. The processes governing the relationship between catalyst oxygen storage, HC conversion efficiency, and rear EGO sensor response are reviewed in detail. A simple physical model relating catalyst oxygen storage capacity and rear EGO sensor response is constructed and used in conjunction with experimental data to provide additional insight into the operation of the catalyst monitor. The effect that the catalyst washcoat formulation has in determining the relationship between catalyst oxygen storage capacity and HC conversion efficiency and its impact on the catalyst monitor is also investigated. Lastly, the effects of catalyst failure mode, fuel sulfur, and the fuel additive MMT on the catalyst monitor's ability to properly diagnose catalyst function are discussed.
Technical Paper

Experimental and Modeling Investigations of NOx Trap Performance

1996-10-01
962051
This paper summarizes some of the research which has been carried out at Ford Motor Co. in the area of NOx traps. Results from a large body of experimental work are reviewed and used to provide insight into the fundamental processes which govern NOx trap performance. In particular, the key parameters which control thermal durability and sulfur poisoning of the NOx trap are discussed in detail. In addition, a theoretical model of the NOx trap is described and used in the analysis and interpretation of the experimental results.
X