Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Future Development of EcoBoost Technology

2012-05-10
Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

2001-04-30
2001-01-1505
Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

Analytical and Experimental Techniques in Solving the Plastic Intake Manifold NVH

2001-04-30
2001-01-1544
The intent of this paper is to summarize the work of the V8 power plant intake manifold radiated noise study. In a particular V8 engine application, customer satisfaction feedback provided observations of existing unpleasant noise at the driver's ear. A comprehensive analysis of customer data indicated that a range from 500 to 800 Hz suggests a potential improvement in noise reduction at the driver's ear. In this study the noise source was determined using various accelerometers located throughout the valley of the engine and intake manifold. The overall surface velocity of the engine valley was ranked with respect to the overall surface velocity of the intake manifold. An intensity mapping technique was also used to determine the major component noise contribution. In order to validate the experimental findings, a series of analysis was also conducted. The analysis model included not only the plastic intake manifold, but also the whole powertrain.
Technical Paper

Vehicle Wind Noise Analysis Using a SEA Model with Measured Source Levels

2001-04-30
2001-01-1629
A series of tests have been performed on a production vehicle to determine the characteristics of the external turbulent flow field in wind tunnel and road conditions. Empirical formulas are developed to use the measured data as source levels for a Statistical Energy Analysis (SEA) model of the vehicle structural and acoustical responses. Exterior turbulent flow and acoustical subsystems are used to receive power from the source excitations. This allows for both the magnitudes and wavelengths of the exterior excitations to be taken into account - a necessary condition for consistently accurate results. Comparisons of measured and calculated interior sound levels show good correlation.
Technical Paper

Engine Excitation Decomposition Methods and V Engine Results

2001-04-30
2001-01-1595
Engine excitation forces have been studied in the past using one of two methods; a lumped sum or a totally distributed approach. The lumped sum approach gives the well-understood engine inherent unbalance and the totally distributed approach is used in engine CAE models to determine the overall engine response. The approach that will be described in this paper identifies an intermediate level of sophistication. The methodology implemented considers single cylinder forces on the engine block, piston side thrust and main bearing forces, and decomposes them into their order content. The forces are then phased and geometrically distributed appropriately for each cylinder and then each order is analyzed relative to know distributions that are NVH concerns, V-block breathing, block side wall breathing, and block lateral and vertical bending.
Technical Paper

Finite element simulation of drive shaft in truck/SUV frontal crash

2001-06-04
2001-06-0106
Drive shaft modelling effects frontal crash finite element simulation. A 35 mph rigid barrier impact of a body on frame SUV with an one piece drive shaft and a unibody SUV with a two piece drive shaft have been studied and simulated using finite element analyses. In the model, the drive shaft can take significant load in frontal impact crash. Assumptions regarding the drive shaft model can change the predicted engine motion in the simulation. This change influences the rocker @ B-pillar deceleration. Two modelling methods have been investigated in this study considering both joint mechanisms and material failure in dynamic impact. Model parameters for joint behavior and failure should be determined from vehicle design information and component testing. A body on frame SUV FEA model has been used to validate the drive shaft modeling technique by comparing the simulation results with crash test data.
Technical Paper

Fuel Economy Benefit of Cylinder Deactivation - Sensitivity to Vehicle Application and Operating Constraints

2001-09-24
2001-01-3591
A Variable Displacement Engine (VDE) improves fuel economy by deactivating half the cylinders at light load. The actual fuel economy benefit attained in the vehicle depends on how often cylinders can be deactivated, which is a function of test cycle, engine size, and vehicle weight. In practice, cylinder deactivation will also be constrained by NVH (noise, vibration, and harshness). This paper presents fuel economy projections for VDE in several different engine and vehicle applications. Sensitivity to NVH considerations is quantified by calculating fuel economy with and without cylinder deactivation in various operating modes: idle, low engine speed, 1st and 2nd gear, and warm-up after cold start. The effects of lug limits and calibration hysteresis are also presented.
Technical Paper

Hybrid Powertrain with an Engine-Disconnecting Clutch

2002-03-04
2002-01-0930
Several types of hybrid-electric vehicles have been developed at Ford Research Laboratory. Among the parallel hybrid systems with a single electric motor, two types were studied. In the first type, the electric motor was attached directly to the crankshaft (mild hybrid) [1], to enable the engine start-stop and regeneration functions. In the second type (full hybrid) the electric motor was connected to the engine through the use of a clutch to allow electric launch of the vehicle and pure electric driving at low speeds. The full hybrid powertrain described in this paper uses a more powerful electric motor for enhanced regenerative braking and engine power assist. An engine-disconnecting clutch saves energy during both the electric propulsion and during vehicle braking. When the clutch is disengaged the engine is shut-off, which eliminates the energy otherwise spent on motoring the engine during electric propulsion.
Technical Paper

Variables Influencing Shoulder Belt Positioning of Four Point Safety Belts

2001-03-05
2001-01-0382
The purpose of this study was to determine the optimal location of the shoulder belts for a suspender style four-point safety belt system. This optimal location must satisfy two conditions. First, the shoulder belts must properly fit over the occupant’s shoulders for safety performance. Second, the shoulder belts location on the occupant’s body must be acceptable to the occupant. To determine the optimal acceptable location of the shoulder belts, forty-four subjects were recruited by height and tested in a reconfigurable test seat. The results showed that avoiding an interaction between the shoulder belts and the occupant’s neck improved the acceptability of the system. Variables that affected this interaction included the horizontal and vertical position of the shoulder belts and the occupant’s weight, clothing, and gender.
Technical Paper

Safety, Mobility and the Environment: the Electronic Cocoon

2000-11-01
2000-01-C003
An electronic cocoon is a vehicle in which the requirements of safety, mobility and the environment are managed electronically using information from on-board and off-board data networks. The center of these data networks is the driver's own complex and adaptive network which has interfaces of its own with sensory, cognitive and motor capabilities and are variable across the population. In this paper, we describe the delicate balance between the unbounded desires for the ideal and the viable expectations of reality. Our vision will be described in the light of significant and exciting technological advances, sobered by the realities of our increasingly complex driving environment --- an environment that actively and constantly challenges the driver's finite attentive resources.
Technical Paper

The Emerging Fabric of Seamless Mobility

2000-11-01
2000-01-C033
Consider this recent data about the "speed'' of the information age: In a sixty-month window beginning in the year 1995, the number of cellular phone subscribers increased from 90 million to 330 million, the number of people on the internet went from about 5 million to just under 200 million, and not surprisingly the number of websites grew from a few thousands to 50 million. Now further consider that almost every cellular phone subscriber is also an automobile user, be it as a driver or a passenger. A fabric of mobility soon emerges --- one that is formed by the meshing of the strands of information mobility with those of personal mobility. In this paper we explore a "new frontier'' --- a "territory'' on this multidimensional fabric that is defined by the demands of seamless mobility. The typical daily cycle of events in our lives involve many different modalities and time-phases of mobility. We examine the rapidly increasing demands of seamless mobility in this context.
Technical Paper

Theoretical Evaluation of the Requirements of the 1999 Advanced Airbag SNPRM – Part One: Design Space Constraint Analysis

2001-03-05
2001-01-0165
In the 1999 Supplemental Notice for Proposed Rulemaking (SNPRM) for Advanced Airbags, the National Highway Traffic Safety Administration (NHTSA) sought comments on the maximum speed at which the high-speed, unbelted occupant test suite will be conducted, i.e., 48 kph vs. 40 kph. To help address this question, an analysis of constraints was performed via extensive mathematical modeling of a theoretical restraint system. First, math models (correlated with several existing physical tests) were used to predict the occupant responses associated with 336 different theoretical dual-stage driver airbag designs subjected to six specific Regulated and non-Regulated tests.
Technical Paper

Comparison of Performance between Several Vehicle Windshield Defrosting and Demisting Mechanisms

2001-03-05
2001-01-0582
The safety and comfort aspects of passenger cars are significant sales argument and have become a topic of rising importance during the development process of a new car. The objective of this study is to compare the performance of several current model vehicles, highlight the drawbacks of current defrosting/demisting systems and point the way to improved passive mechanisms. The investigation is experimental. The experiments are carried out using full-scale current vehicle models. The results show that the current designs of the defroster nozzle give maximum airflow rates in the vicinity of the lower part of the windshield, which decrease gradually towards the upper parts of the windshield. This hinders and limits the vision of the driver, particularly at the top of the windshield, which can be uncomfortable and indeed dangerous.
Technical Paper

Digital Occupant: Personal Immersion for Subjective Evaluations of a Vehicle

2000-06-06
2000-01-2154
Ford’s use of digital mockups in vehicle design has improved the package and fit of components and systems within the vehicle. However, to fully meet and exceed the consumer’s expectations of a vehicle it is crucial to make subjective evaluations of a vehicle’s comfort, convenience, visibility, and accessibility early in the design process. Efficient and nimble design requires an understanding of the subjective qualities of the vehicle before any physical prototypes exist. The Digital Occupant personally immerses an individual (e.g. member of the design team, market researcher or consumer) within the digital mockup earlier to facilitate these subjective evaluations. This paper describes the technologies and emerging methodologies integrated to produce the Digital Occupant. This personally immersive simulation includes a full body real-time dynamic digital representation of the individual being immersed.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

A Predictive Model for Feedgas Hydrocarbon Emissions: An Extension to Warm Engine Maps

2005-10-24
2005-01-3862
A feedgas hydrocarbon emissions model that extends the usefulness of fully-warmed steady-state engine maps to the cold transient regime was developed for use within a vehicle simulation program that focuses on the powertrain control system (Virtual Powertrain and Control System, VPACS). The formulation considers three main sources of hydrocarbon. The primary component originates from in-cylinder crevice effects which are correlated with engine coolant temperature. The second component includes the mass of fuel that enters the cylinder but remains unavailable for combustion (liquid phase) and subsequently vaporizes during the exhaust portion of the cycle. The third component includes any fuel that remains from a slow or incomplete burn as predicted by a crank angle resolved combustion model.
Technical Paper

A Theoretical Math Model for Projecting Ais3+ Thoracic Injury for Belted Occupants in Frontal Impacts

2004-11-01
2004-22-0020
A theoretical math model was created to assess the net effect of aging populations versus evolving system designs from the standpoint of thoracic injury potential. The model was used to project the next twenty-five years of thoracic injuries in Canada. The choice of Canada was topical because rulemaking for CMVSS 208 has been proposed recently. The study was limited to properly-belted, front-outboard, adult occupants in 11-1 o'clock frontal crashes. Moreover, only AIS3+thoracic injury potential was considered. The research consisted of four steps. First, sub-models were developed and integrated. The sub-models were made for numerous real-world effects including population growth, crash involvement, fleet penetration of various systems (via system introduction, vehicle production, and vehicle attrition), and attendant injury risk estimation. Second, existing NASS data were used to estimate the number of AIS3+ chest-injured drivers in Canada in 2001.
Technical Paper

A New FEA Method for the Evaluation of a Body Joint

2001-03-05
2001-01-0758
A finite element analysis method has been developed to assess the design of an automobile body joint. The concept of the coefficient of joint stiffness and the force distribution ratio are proposed accordingly. The coefficient of joint stiffness reveals whether a joint is stiff enough compared to its joining components. In addition, these parameters can be used to estimate the potential and the effectiveness for any further improvement of the joint design. The modeling and analysis of the proposed process are robust. The coefficient of joint stiffness could be further developed to serve as the joint design target.
Technical Paper

Demonstration of HCCI Using a Single Cylinder Four-stroke SI Engine with Modified Valve Timing

2000-10-16
2000-01-2870
A standard port fuel injected, unthrottled single cylinder four-stroke SI engine, with a compression ratio of 10.3:1, and using standard gasoline fuel, has been adapted to operate in the homogeneous charge compression ignition (HCCI) mode, by modifying the valve timing. It has been found that over a speed range of between 1300 and 2000 rpm, and lambda values of between 0.95 and 1.1, stable operation is achieved without spark ignition. The internal EGR rate was estimated to be about 60%, and emissions of NOX were typically 0.25 g/kWh. Practical implementation of this HCCI concept will require variable valve timing, which will also enable reversion to standard SI operation for maximum power.
Technical Paper

Correlating Stressed Environmental Testing of Structural Composites to Service

2001-03-05
2001-01-0094
A compact in-situ tensile stress fixture was designed for the study of the combined effects of stress and automotive environments on structural glass fiber-reinforced composite materials. With this fixture, a standardized 300 hour laboratory screening test was developed to compare the residual property loss of composite materials due to concurrent exposure to stress and environment. It is of great importance that the data gathered in the laboratory have correlation to on-vehicle (in-service) performance, and that both lab and real world data be taken with a test system (in-situ test fixtures) capable of providing accurate and consistent results under either test condition.
X