Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Technical Paper

Comparison of an Alternative Particulate Mass Measurement with Advanced Microbalance Analysis

2004-03-08
2004-01-0589
The regulated level of particulate mass for 2007 heavy duty diesel on-road engines is 0.01 g/bkhp-hr. Measurement of this low level of particulate by weighing is costly and time consuming. The weighing method must measure 100 μg or less of particulate on a filter that weighs about 100 mg with a resolution of ± 2.5 μg or better. This means that the microbalance and sampling handling procedure must be accurate within ±25 ppm by mass or ±1/40,000. It requires a microbalance with 0.1 μg precision housed in a special environment. Moreover, the weighing method involves a lengthy process. The filter must be equilibrated, and then pre- and post-weighed, usually with repeat measurements. An alternative to gravimetric analysis is a thermal mass analyzer that measures the semi-volatile organic fraction (SOF), as well as soot and sulfate fractions of the particulate matter (PM) collected on a cleaned quartz filter. The calibration of the thermal mass measurement is discussed in detail.
Technical Paper

PM Measurement Artifact: Organic Vapor Deposition on Different Filter Media

2004-03-08
2004-01-0967
PM (Particulate Matter) emitted by vehicles and engines is most often measured quantitatively by collecting diluted exhaust samples on filters that are weighed pre-and post-test. The filter media used have high efficiency for small particles found in vehicle exhaust, but they also collect organic matter from the vapor phase with a lower, but nonzero, efficiency. In the past, organic vapor adsorption was usually negligible compared with PM levels from untreated diesel engine exhaust. For vehicles employing a DPF (Diesel Particulate Filter) and emitting very low PM, that is no longer the case. This paper reports measurements of the organic vapor deposition artifact for different filter media, including the two types (TX40 and Teflo) called for by the 2007 regulations for heavy duty diesel engines. The vapor artifact represents a substantial fraction of the 2007 regulatory standard of 10 mg/mi for light duty vehicles.
X