Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

The Effect of Ported Shroud Recirculating Casing Treatment on Turbocharger Centrifugal Compressor Acoustics

2017-06-05
2017-01-1796
Ported shroud compressor covers recirculate low momentum air near the inducer blade tips, and the use of these devices has traditionally been confined to extending the low-flow operating region at elevated rotational speeds for compressors on compression-ignition (CI) engines. Implementation of ported shrouds on compressors for spark-ignition (SI) engines has been generally avoided due to operation at pressure ratios below the region where ported shrouds improve low-flow range, the slight efficiency penalty, and the perception of increased noise. The present study provides an experimental investigation of performance and acoustics for a SI engine turbocharger compressor both with a ported shroud and without (baseline). The objective of implementing the ported shroud was to reduce mid-flow range broadband whoosh noise of the baseline compressor over 4-12 kHz.
Technical Paper

Incorporating Design Variation into a 1-D Analytical Model of a 4.6L-4V Ford Engine for Improving Performance Projections

2007-10-29
2007-01-4098
One-dimensional simulation tools are used extensively in the automotive industry to improve and optimize engine design for WOT performance. They are useful in target setting and in assessing the effects of certain design changes (e.g. intake manifold, valve timing, exhaust manifold, etc.). Generally the inputs to these models are “nominal” values or curves from a particular set of data and, therefore, do not take into account design or assembly variations. Often times, performance expectations are not met due to these “real world” effects and may result in significant re-design and testing efforts. The purpose of this paper is to assess the impact of typical model input variation on engine performance and to instill greater confidence in the use of these models in forecasting performance. The approach taken is to collect, analyze, and categorize actual build measurements from a 4.6L 4V Ford engine that are considered important inputs for a one-dimensional modeling.
Technical Paper

Effectiveness of Swirl-Vanes Upstream of Casing-Treatment at the Compressor Inlet in Automotive Turbochargers

2016-04-05
2016-01-1022
The use of Swirl-Vanes or Inlet Guide Vanes (IGV) in gas engines is well-known and has demonstrated their ability to improve compressor surge margin at low flow rates. But, the use of swirl-vanes is not too common in large diesel engine turbo-chargers where compressor housing inlet has some form of Casing-Treatment (CT). Recently, Ford engineers tested swirl-vanes in a diesel engine turbocharger where the compressor inlet had a ported shroud casing-treatment and the experimental data showed no improvement in surge margin. Computational Fluid Dynamics (CFD) analyses were performed to investigate reasons why the surge margin did not improve after introducing swirl-vanes at the compressor inlet. The CFD results showed strong interactions between swirling flow at the compressor inlet and flow stream coming out of the compressor inlet casing-treatment.
Technical Paper

Effective Suppression of Surge Instabilities in Turbocharger Compression Systems through a Close-Coupled Compressor Inlet Restriction

2018-09-10
2018-01-1714
The current work demonstrates effective suppression of compression system surge instabilities by installing a variable cross-sectional flow area restriction within the inlet duct of a turbocharger centrifugal compressor operating on a bench-top facility. This restriction couples with the compressor, similar to stages in a multi-stage turbomachine, where the effective pressure ratio is the product of those for the restriction and compressor. During experiments at constant compressor rotational speed, the compressor is stable over the negatively sloped portion of the pressure ratio vs. flow rate characteristics, so the restriction is eliminated within this operating region to preserve compressor performance. At low flow rates, the slope of the compressor alone characteristics reaches a positive value, and the unrestricted compression system enters mild surge. Further reduction of flow rate with the unrestricted compressor inlet results in a sudden transition to deep surge instabilities.
Technical Paper

Surge Prediction in a Single Sequential Turbocharger (SST) Compressor Using Computational Fluid Dynamics

2019-06-05
2019-01-1490
The Single Sequential Turbocharger (SST) used in Ford’s 6.7L Scorpion Diesel is analyzed using Computational Fluid Dynamics (CFD) to draw conclusions about the compressor stability at low mass flows. The SST compressor concept consists of a double-sided wheel which flows in parallel fed by two separate inlets (front and rear), followed by a single vane-less diffuser, and a volute. CFD simulations for the full stage are performed at low mass flow rates Both, front and rear, sides have ported shroud casing-treatment (CT) in the inlet region. An objective of the analysis is to determine which side of the SST unit compressor (front or rear on the double-sided wheel) suffers flow break down first as the mass flow is reduced, and its impact on the overall stability of the SST compressor. Another objective is to better understand the interactions between the compressor inlet flow and the flow through the casing-treatment.
Journal Article

Circumferential Variation of Noise at the Blade-Pass Frequency in a Turbocharger Compressor with Ported Shroud

2021-08-31
2021-01-1044
The ported shroud casing treatment for turbocharger compressors offers a wider operating flow range, elevated boost pressures at low compressor mass flow rates, and reduced broadband whoosh noise in spark-ignition internal combustion engine applications. However, the casing treatment elevates tonal noise at the blade-pass frequency (BPF). Typical rotational speeds of compressors employed in practice push BPF noise to high frequencies, which then promote multi-dimensional acoustic wave propagation within the compressor ducting. As a result, in-duct acoustic measurements become sensitive to the angular location of pressure transducers on the duct wall. The present work utilizes a steady-flow turbocharger gas stand featuring a unique rotating compressor inlet duct to quantify the variation of noise measured around the duct at different angular positions.
Journal Article

Turbocharger Centrifugal Compressor Casing Treatment for Improved BPF Noise Using Computational Fluid Dynamics

2019-06-05
2019-01-1484
The conventional ported shroud recirculation casing treatment elevates narrowband noise at blade pass frequency. A new ported shroud recirculating casing treatment was implemented in Ford’s 3.5L turbo gas engine as Noise Vibration and Harshness (NVH) counter measure to reduce whoosh (broadband flow noise) noise without elevating narrowband noise at blade pass frequency. The new ported shroud design incorporates holes between the main and secondary recirculating passage and a slight cross-sectional area reduction just upstream of the impeller. These design features reduce whoosh noise without elevating the first order and the sixth order tonal noise at blade pass frequency. The new ported shroud design decreases narrowband tonal noise sound pressure level by 3-6 dB in the low to mid flow region compared to the baseline design. Computational Fluid Dynamics (CFD) tools were used to develop this casing treatment design.
Technical Paper

The Development of Acoustics Compressor Maps and Computational Aeroacoustic Method to Evaluate Turbocharger Inlet Flow Control Devices

2017-09-19
2017-01-2071
The advent of turbochargers and the Eco-Boost technology at Ford in gasoline engines creates new challenges that need to be addressed with innovative designs. One of them is flow induced noise caused by airflow entering the turbocharger during off design operation. At certain vehicle operation conditions, the mass flow rate and pressure ratio are such that compressor wheel can generate a wide range of acoustic frequencies. Characterization of ‘whistles’ or pure tonal noises, ‘whoosh’ or broad band frequency noise caused by flow separation from the blade surfaces, and chirps, where the frequency increases or decreases with time are a few of the common error states. Understanding the fundamental mechanisms of such noise generation is necessary for developing effective countermeasures for the noise source generation. Computational Aero-Acoustic (CAA) analyses are performed to study the effects of inlet and outlet conditions to find the source of the noise.
X