Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Test Section Configuration on Aerodynamic Drag Measurements

2001-03-05
2001-01-0631
Aerodynamic measurements in automotive wind tunnels are degraded by test section interference effects, which increase with increasing vehicle blockage ratio. The current popularity of large vehicles (i.e. trucks and sport utility vehicles) makes this a significant issue. This paper describes the results of an experimental investigation carried out in support of the Ford/Sverdrup Driveability Test Facility (DTF), which includes an aero-acoustic wind tunnel (Wind Tunnel No. 8). The objective was to quantify the aerodynamic interference associated with two candidate test section configurations for Wind Tunnel No. 8-semi-open jet and slotted wall. The experiments were carried out at 1/11-scale in Sverdrup laboratories. Four automobile shapes (MIRA models) and six Sport Utility Vehicle (SUV) shapes representing blockages from 7% to 25% were used to evaluate changes in measured aerodynamic coefficients for the two test section configurations.
Technical Paper

Wind Noise and Drag Optimization Test Method for Sail-Mounted Exterior Mirrors

2003-05-05
2003-01-1702
An L18 Taguchi-style Design of Experiments (DOE) with eight factors was used to optimize exterior mirrors for wind noise and drag. Eighteen mirror properties were constructed and tested on a full size greenhouse buck at the Lockheed low-speed wind tunnel in Marietta, GA. Buck interior sound data and drag measurements were taken at 80 MPH wind speed (0° yaw angle). Key wind noise parameters were the fore/aft length of mirror housing and the plan view angle of the mirror housing's inboard surface. Key drag parameters were the fore/aft length of the mirror housing, the cross-section shape of the mirror pedestal, and the angle of the pedestal (relative to the wind).
Technical Paper

The Effect of Friction Modifiers on the Low-Speed Friction Characteristics of Automatic Transmission Fluids Observed with Scanning Force Microscopy

1998-02-23
981099
The effect of friction modifiers on the low-speed frictional properties of automatic transmission fluids (ATFs) was investigated by scanning force microscopy (SFM). A clutch lining material was covered by a droplet of test ATF, and a steel tip was scanned over the sample. The scanning speeds were varied from 0.13 to 8.56 mm /sec, and the frictional force was deduced from the torsion of the SFM cantilever. A reduction in dynamic friction due to the addition of the friction modifier was clearly observed over the entire speed range. This indicates that the boundary lubrication mechanism is dominant under this condition, and therefore surface-active friction modifiers can effectively improve the frictional characteristics. The friction reduction was more pronounced at lower sliding speeds. Thus addition of friction modifiers produced a more positive slope in the μ-ν (friction vs. sliding speed) plots, and would contribute to make wet clutch systems less susceptible to shudder vibrations.
Technical Paper

Design and Development of 25% Post-Industrial Recycled SMC Hood Assembly for the 1998 Lincoln Continental Program

1998-02-23
981019
This paper describes the process of incorporation of 25% post-industrial recycled sheet molded composite (SMC) material in the 1998 Continental Hood inner. 1998 Continental Hood assembly consists of traditional SMC outer and this recycled hood inner along with three small steel reinforcements. BUDD Plastics collects SMC scraps from their manufacturing plants. The scrap is then processed and made into fillers for production of SMC. Strength of SMC comes from glass fibers and fillers are added to produce the final mix of raw materials. This recycled material is approximately 10% lighter and less stiff than the conventional virgin SMC. This presented unique challenges to the product development team to incorporate this material into a production vehicle in order to obtain the desired goal of reducing land fill and improving the environment.
Technical Paper

Transient CFD Simulations of a Bell Sprayer

1998-09-29
982291
A methodology is developed that incorporates high resolution CFD flowfield information and a particle trajectory simulation, aimed at addressing Paint Transfer Efficiency (PTE) for bell sprayers. Given a solid model for the bell sprayer, the CFD simulation, through automeshing, determines a high resolution Cartesian volume mesh (14-20 million cells). With specified values of the initial shaping air, transient and steady-state flow field information is obtained. A particle trajectory visualization tool called SpraySIM uses this complicated flowfield information to determine the particle trajectories of the paint particles under the influence of drag, gravity and electrostatic potential. The sensitivity of PTE on shaping air velocity, charge-to-mass ratio, potential, and particle diameter are examined.
Technical Paper

Strain-Rate Characterization of Automotive Steel and the Effect of Strain-Rate in Component Crush Analysis

1998-09-29
982392
The effects of strain-rate and element mesh size on the numerical simulation of an automotive component impacted by a mass dropped from an instrumented drop tower was investigated. For this study, an analysis of a simple steel rail hat-section impacted by a mass moving at an initial velocity of 28Mph was performed using the explicit finite element code Radioss. Three constitutive material models: Elasto-Plastic (without strain rate), Johnson-Cook, and Zerilli-Armstrong were used to characterize the material properties for mild and high strength steel. Results obtained from the numerical analyses were compared to the experimental data for the maximum crush, final deformation shape, average crush force and the force-deflection curve. The results from this study indicate that the mechanical response of steel can be captured utilizing a constitutive material model which accounts for strain rate effect coupled with an average mesh size of 6 to 9mm.
Technical Paper

Laser & Fine Plasma Trimming of Sheet Metal Parts for Low Volume Production

1998-09-29
982333
This study compared laser and fine plasma technology for cutting typical electro-galvanized steel and aluminum automotive stampings. Comparisons were made of various aspects of cut quality, accuracy, disturbance of parent material, cycle time, and capital and operating costs. A sensitivity analysis was included to determine how different scenarios would impact the operating costs. It was found that both processes were capable of high quality cuts at 3800mm/min. Capital savings were achievable through the fine plasma system, but careful consideration of the specific application was essential. This work will allow for an advised comparison of options for sheet metal flexible cutting.
Technical Paper

Shape Optimization of IC Engine Ports and Chambers

1998-02-23
980127
Intense competition and global regulations in the automotive industry has placed unprecedented demands on the performance, efficiency, and emissions of today's IC engines. The success or failure of a new engine design to meet these often-conflicting requirements is primarily dictated by its capability to provide minimal restriction for the inducted and exhausted flow and by its capability to generate strong large-scale in-cylinder motion. The first criterion is directly linked to power performance of the engine, while the latter has been shown to control the burn rate in IC engines. Enhanced burn rates are favorable to engine efficiency and partial load performance. CFD based Numerical Simulations have recently made it possible to study the development of such engine flows in great details. However, they offer little guidance for modifying the ports and chamber geometry controlling the flow to meet the desired performance.
Technical Paper

A Thermoviscoplastic FE Model for the Strain Prediction in High Temperature, Thermal Cycling Applications for Silicon Molybdenum Nodular Cast Iron

1998-02-23
980697
The design of components for high temperature, thermal cycling situations has traditionally been a challenging problem because the analysis must compensate for the non-linear behavior of the material. One example for automotive applications is the exhaust manifold, where temperatures may reach 900°C during thermal cycling. Fatigue failure and excessive deformation of these components must be analyzed with thermoviscoplastic models. A Finite Element (FE) model is developed to simulate the material behavior at high temperature, thermal cycling conditions. A specimen of Silicon Molybdenum Nodular Cast Iron (4% Si, 0.8% Mo) is cycled between maximum temperatures of 500°C and 960°C while the stress is measured with respect to time. The model predictions for stress are compared to the experimental results for two rates of thermal cycling. The analysis is conducted with and without creep effects to understand its contribution to the overall strain.
Technical Paper

The Influence of Cooling System Variables

1978-02-01
780595
A vehicle fleet test has been conducted to determine if octane advantages due to selected cooling system variables persist with stabilized deposits. The variables tested were reduced coolant temperatures, a direct substitution of aluminum for the iron cylinder head and an aluminum head with Unique Cooling. Octane requirements, octane requirement increase (ORI), emissions and fuel economy results are presented and discussed. Engine tests to determine the sensitivity of octane to independently controlled engine temperatures confirmed the primary dependence upon coolant temperature. Additional tests identified some of the variables which cause octane differences among the cylinders of one engine and between engine families.
Technical Paper

Mechanical Drag Model for an Electric Machine

2017-03-28
2017-01-1230
Mechanical losses in electric machines can contribute significantly to overall system losses in an electric drive [1]. With a permanent magnet synchronous machine (PMSM), measuring mechanical losses is difficult without an un-magnetized rotor. Even with an un-magnetized rotor, physical testing can be time consuming and expensive. This paper presents a simple theoretical model of mechanical drag in an electric machine. The model was built using calculations for bearing, seal, and windage drag and was compared to experimental results from testing with un-magnetized motors. Based on this information, the model was modified to better represent the physical system. The goal of this work is to understand the contributors to mechanical drag, to be able to estimate mechanical losses without physical testing, and to be able to quickly evaluate design choices that could reduce mechanical losses.
Technical Paper

Identification of Permanent Magnet Synchronous Motor Parameters

2017-03-28
2017-01-1237
For high performance motor controls applications such as electric vehicles, accurate motor parameter knowledge is required. Motor parameters like d-axis inductance, q-axis inductance, resistance and permanent magnet flux linkage are difficult to obtain and measure directly. These four parameters can be reduced to three parameters resistance, d-axis and q axis flux linkage. In this paper, a new scheme is proposed to approximate d-axis and q-axis flux linkage using measured torque, dq-axis measured current, and dq-axis voltage commands to the inverter. d-axis and q-axis flux linkages are estimated over a range of d-axis and q-axis currents that fully map the desired motor operation region.
Technical Paper

Deconstruction of UN38.3 into a Process Flowchart

2017-03-28
2017-01-1208
This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
Technical Paper

Ting Noise Generation in Automotive Applications

2017-03-28
2017-01-1121
Automobile customers are looking for higher performance and quieter comfortable rides. The driveline of a vehicle can be a substantial source of NVH issues. This paper provides an understanding of a driveline noise issue which can affect any variant of driveline architecture (FWD, AWD, RWD and 4X4). This metallic noise is mostly present during the take-off and appropriately termed as ting noise. This noise was not prevalent in the past. For higher fuel economy, OEMs started integrating several components for lighter subsystems. This in effect made the system more sensitive to the excitation. At present the issue is addressed by adding a ting washer in the interface of the wheel hub bearings and the halfshafts. This paper explains the physics behind the excitation and defines the parameters that influence the excitation. The halfshaft and the wheel hub are assembled with a specified hub nut torque.
Technical Paper

An Extensive Validation of an Open Source Based Solution for Automobile External Aerodynamics

2017-03-28
2017-01-1524
The number of computational fluid dynamics (CFD) simulations performed during the vehicle aerodynamic development process continues to expand at a rapid rate. One key contributor to this trend is the number of analytically based designed experiments performed to support vehicle aerodynamic shape development. A second contributor is the number of aerodynamic optimization studies performed for vehicle exterior components such as mirrors, underbody shields, spoilers, etc. A third contributor is the increasing number of “what if” exploratory studies performed early in the design process when the design is relatively fluid. Licensing costs for commercial CFD solutions can become a significant constraint as the number of simulations expands.
Technical Paper

The Application of a One-Way Coupled Aerodynamic and Multi-Body Dynamics Simulation Process to Predict Vehicle Response during a Severe Crosswind Event

2017-03-28
2017-01-1515
Industry trends towards lighter, more aerodynamically efficient road vehicles have the potential to degrade a vehicle’s response to crosswinds. In this paper, a methodology is outlined that indirectly couples a computational fluid dynamics (CFD) simulation of the vehicle’s aerodynamic characteristics with a multi-body dynamics simulation (MBD) to determine yaw, roll and pitch response characteristics during a severe crosswind event. This one-way coupling approach mimics physical test conditions outlined in open loop test procedure ISO 12021:2010 that forms part of the vehicle sign-off criterion at Ford Motor Company. The methodology uses an overset mesh CFD method to drive the vehicle through a prescribed crosswind event, providing unfiltered predictions of vehicle force and moment responses that are used as applied forces in the MBD model. The method does not account for changes in vehicle attitude due to applied aerodynamic forces and moments.
Technical Paper

Wear of D2 Tool Steel Dies during Trimming DP980-type Advanced High Strength Steel (AHSS) for Automotive Parts

2017-03-28
2017-01-1706
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
Technical Paper

Simulation of Flow Control Devices in Support of Vehicle Drag Reduction

2018-04-03
2018-01-0713
Flow control devices can enable vehicle drag reduction through the mitigation of separation and by modifying local and global flow features. Passive vortex generators (VG) are an example of a flow control device that can be designed to re-energize weakly-attached boundary layers to prevent or minimize separation regions that can increase drag. Accurate numerical simulation of such devices and their impact on the vehicle aerodynamics is an important step towards enabling automated drag reduction and shape optimization for a wide range of vehicle concepts. This work demonstrates the use of an open-source computational-fluid dynamics (CFD) framework to enable an accurate and robust evaluation of passive vortex generators in support of vehicle drag reduction. Specifically, the backlight separation of the Ahmed body with a 25° slant is used to evaluate different turbulence models including variants of the RANS, DES, and LES formulations.
Technical Paper

THE INTERSTATE HIGHWAY SYSTEM SUPER TRANSPORT TRUCK

1965-02-01
650160
This paper describes the design and build of an experimental super transport truck for high-speed, long distance freight hauling on the interstate highway system of the 1970's. The tractor, powered by a 600-hp gas turbine engine, pulls two 40-foot tandem axle trailers at a G.C.W. of 170,000 lbs. Details of the turbine engine development are covered in SAE paper, No. 991B. One of the features of the super transport truck is the cab, which is designed for long-distance, non-stop, two-man operation. It is provided with sleeping accommodations, washroom conveniences, food facilities, and a complete heating and air-conditioning system. The 13-foot high cab roof is flush with the top of the trailers, providing a substantial aerodynamic advantage. Other features and components of the truck are described, and observations made during the 5500-mile national tour are discussed.
Technical Paper

MMLV: Chassis Design and Component Testing

2015-04-14
2015-01-1237
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefits and fuel consumption reduction. As part of this project, several automotive chassis components were selected for development and evaluation on the MMLV C/D segment passenger sedan.
X