Refine Your Search

Topic

Author

Affiliation

Search Results

Video

GreenZone Driving for Plug In Hybrid Electric Vehicles

2012-05-29
Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

A Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems

2013-09-24
2013-01-2400
In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices or existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations.
Journal Article

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

2013-09-24
2013-01-2471
Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption.
Technical Paper

Calibration of Electrochemical Models for Li-ion Battery Cells Using Three-Electrode Testing

2020-04-14
2020-01-1184
Electrochemical models of lithium ion batteries are today a standard tool in the automotive industry for activities related to the computer-aided engineering design, analysis, and optimization of energy storage systems for electrified vehicles. One of the challenges in the development or use of such models is the need of detailed information on the cell and electrode geometry or properties of the electrode and electrolyte materials, which are typically unavailable or difficult to retrieve by end-users. This forces engineers to resort to “hand-tuning” of many physical and geometrical parameters, using standard cell-level characterization tests. This paper proposes a method to provide information and data on individual electrode performance that can be used to simplify the calibration process for electrochemical models.
Technical Paper

Impact to Cooling Airflow from Truck Platooning

2020-04-14
2020-01-1298
We investigate tradeoffs between the airflow strategies related to engine cooling and the aerodynamic-enabled fuel savings created by platooning. By analyzing air temperatures, engine temperatures and cooling air flow at different platoon distances, we show the thermal impact to the engine from truck platooning. Previously, we collected wind and thermal data for numerous heavy-duty truck platoon configurations (gaps ranging from 4 to 87 meters) and reported the significant fuel savings enabled by these configurations. The fuel consumption for all trucks in the platoon were measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate while travelling at 65 mph and loaded to a gross weight of 65,000 lb.
Journal Article

Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement

2015-04-14
2015-01-1709
Electric drive vehicles (EDVs) have complex thermal management requirements not present in conventional vehicles. In addition to cabin conditioning, the energy storage system (ESS) and power electronics and electric motor (PEEM) subsystems also require thermal management. Many current-generation EDVs utilize separate cooling systems, adding both weight and volume, and lack abundant waste heat from an engine for cabin heating. Some use battery energy to heat the cabin via electrical resistance heating, which can result in vehicle range reductions of 50% under cold ambient conditions. These thermal challenges present an opportunity for integrated vehicle thermal management technologies that reduce weight and volume and increase cabin heating efficiency. Bench testing was conducted to evaluate a combined fluid loop technology that unifies the cabin air-conditioning and heating, ESS thermal management, and PEEM cooling into a single liquid coolant-based system.
Journal Article

A Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

2015-04-14
2015-01-1306
Battery second use-putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure-has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g., electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to battery degradation, including: How long will PEV batteries last in automotive service? How healthy will PEV batteries be when they leave automotive service? How long will retired PEV batteries last in second-use service? How well can we best predict the second-use lifetime of a used automotive battery? Under the support of the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory has developed a methodology and the requisite tools to answer these questions, including the Battery Lifetime Simulation Tool (BLAST).
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 1

2016-04-05
2016-01-0183
Exhaust Gas Recirculation (EGR) coolers are commonly used in diesel and modern gasoline engines to reduce the re-circulated gas temperature. A common problem with the EGR cooler is a reduction of the effectiveness due to the fouling layer primarily caused by thermophoresis, diffusion, and hydrocarbon condensation. Typically, effectiveness decreases rapidly at first, and asymptotically stabilizes over time. There are several hypotheses of this stabilizing phenomenon; one of the possible theories is a deposit removal mechanism. Verifying such a mechanism and finding out the correlation between the removal and stabilization tendency would be a key factor to understand and overcome the problem. Some authors have proposed that the removal is a possible influential factor, while other authors suggest that removal is not a significant factor under realistic conditions.
Journal Article

Hazard Warning Performance in Light of Vehicle Positioning Accuracy and Map-Less Approach Path Matching

2017-03-28
2017-01-0073
Vehicle to Vehicle Communication use case performance heavily relies on market penetration rate. The more vehicles support a use case, the better the customer experience. Enabling these use cases with acceptable quality on vehicles without built-in navigation systems, elaborate map matching and highly accurate sensors is challenging. This paper introduces a simulation framework to assess system performance in dependency of vehicle positioning accuracy for matching approach path traces in Decentralized Environmental Notification Messages (DENMs) in absence of navigation systems supporting map matching. DENMs are used for distributing information about hazards on the road network. A vehicle without navigation system and street map can only match its position trajectory with the trajectory carried in the DENM.
Journal Article

Potentials for Platooning in U.S. Highway Freight Transport

2017-03-28
2017-01-0086
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as a means for improving road transportation systems by reducing fuel consumption – and related emissions – while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, which are currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning.
Journal Article

HEV Battery Pack Thermal Management Design and Packaging Solutions

2017-03-28
2017-01-0622
Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
Journal Article

Rapidly Pulsed Reductants in Diesel NOx Reduction by Lean NOx Traps: Effects of Mixing Uniformity and Reductant Type

2016-04-05
2016-01-0956
Lean NOx Traps (LNTs) are one type of lean NOx reduction technology typically used in smaller diesel passenger cars where urea-based Selective Catalytic Reduction (SCR) systems may be difficult to package . However, the performance of lean NOx traps (LNT) at temperatures above 400 C needs to be improved. The use of Rapidly Pulsed Reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of a LNT in order to expand its operating window to higher temperatures and space velocities. This approach has also been called Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) by Toyota. There is a vast parameter space which could be explored to maximize RPR performance and reduce the fuel penalty associated with injecting hydrocarbons. In this study, the mixing uniformity of the injected pulses, the type of reductant, and the concentration of pulsed reductant in the main flow were investigated.
Journal Article

Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability

2016-03-14
2016-01-9072
Spark-ignition engine fuel standards have been put in place to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have found a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup.
Journal Article

Experiment and Simulation Study on Unidirectional Carbon Fiber Composite Component under Dynamic Three-Point Bending Loading

2018-04-03
2018-01-0096
In the current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic three-point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-DYNA for a more detailed study. The simulation results show that the delamination plays an important role during dynamic three-point bending test. Based on the analysis with a high-speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, the current material model cannot capture the post-failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonably well.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Technical Paper

Impact of Lateral Alignment on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0594
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the sensitivity of intentional lateral offsets over a range of intervehicle spacings. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb. In addition, the SAE J1939 instantaneous fuel rate was calibrated against the gravimetric measurements and used as proxy for additional analyses. The testing campaign demonstrated the effects of intervehicle gaps, following-vehicle longitudinal control, and manual lateral control. The new results are compared to previous truck-platooning studies to reinforce the value of the new information and demonstrate similarity to past trends. Fuel savings for the following vehicle was observed to exceed 10% at closer following distances.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

Enhancing Engine Starting Performance Using High-Power Density Brushless Starter

2020-04-14
2020-01-0459
Modern hybrid technologies, especially mild and micro-hybrids with auto start/stop feature, demand a starter with higher power, better performance and longer life than conventional brush-type starters. In this paper, a new starter design using a brushless motor is proposed. This improves the engine crank performance during autostarts due to lower inertia, higher torque and wider power band capability of the brushless motor, especially at higher speeds. The overall integrated system includes the motor, inverter and controller all packaged in the same form factor of the original starter housing as a “drop-in replacement”. The prototype starter motor is designed to operate at 48V with a peak power of 4kW but can be designed to operate at the standard 12V. This paper will describe in detail the functionalities of the overall system and the simulation and experimental results of the prototype that was tested on a 4-cylinder engine in a production crossover vehicle.
Technical Paper

DC-Link Capacitor Sizing in HEV/EV e-Drive Power Electronic System from Stability Viewpoint

2020-04-14
2020-01-0468
Selection of the DC-link capacitance value in an HEV/EV e-Drive power electronic system depends on numerous factors including required voltage/current ratings of the capacitor, power dissipation, thermal limitation, energy storage capacity and impact on system stability. A challenge arises from the capacitance value selection based on DC-link stability due to the influence of multiple hardware parameters, control parameters, operating conditions and cross-coupling effects among them. This paper discusses an impedance-based methodology to determine the minimum required DC-link capacitance value that can enable stable operation of the system in this multi-dimensional variable space. A broad landscape of the minimum capacitance values is also presented to provide insights on the sensitivity of system stability to operating conditions.
X