Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Numerical Investigation of the Impact of Nozzle Endwall Clearance Distribution on Variable Nozzle Turbine Performance

2017-03-28
2017-01-1034
As the variable nozzle turbine(VNT) becomes an important element in engine fuel economy and engine performance, improvement of turbine efficiency over wide operation range is the main focus of research efforts for both academia and industry in the past decades. It is well known that in a VNT, the nozzle endwall clearance has a big impact on the turbine efficiency, especially at small nozzle open positions. However, the clearance at hub and shroud wall sides may contribute differently to the turbine efficiency penalty. When the total height of nozzle clearance is fixed, varying distribution of nozzle endwall clearance at the hub and shroud sides may possibly generate different patterns of clearance leakage flow at nozzle exit that has different interaction with and impact on the main flow when it enters the inducer.
Technical Paper

Study on the Interaction of Clearance Flow and Shock Wave in a Turbine Nozzle

2017-03-28
2017-01-1039
Radial flow Variable Nozzle Turbine (VNT) enables better matching between the turbocharger and engine. At partial loading or low-end engine operating points, the nozzle vane opening of the VNT is decreased to achieve higher turbine efficiency and transient response, which is a benefit for engine fuel consumption and emission. However, under certain small nozzle opening conditions (such as nozzle brake and low-end operating points), strong shock waves and strong nozzle clearance flow are generated. Consequently, strong rotor-stator interaction between turbine nozzle and impeller is the key factor of the impeller high cycle fatigue and failure. In present paper, flow visualization experiment is carried out on a linear turbine nozzle. The turbine nozzle is designed to have single-sided clearance, and the Schlieren visualization method is used to describe the formation and development process of clearance flow and shock wave under different clearance and expansion ratio configurations.
Technical Paper

An Assessment of the Impact of Exhaust Turbine Redesign, for Narrow VGT Operating Range, on the Performance of Diesel Engines with Assisted Turbocharger

2019-04-02
2019-01-0326
Electrically assisted turbochargers are a promising technology for improving boost response of turbocharged engines. These systems include a turbocharger shaft mounted electric motor/generator. In the assist mode, electrical energy is applied to the turbocharger shaft via the motor function, while in the regenerative mode energy can be extracted from the shaft via the generator function, hence these systems are also referred to as regenerative electrically assisted turbochargers (REAT). REAT allows simultaneous improvement of boost response and fuel economy of boosted engines. This is achieved by optimally scheduling the electrical assist and regeneration actions. REAT also allows the exhaust turbine to operate within a narrow range of optimal vane positions relative to the unassisted variable geometry turbocharger (VGT). The ability to operate within a narrow range of VGT vane positions allows an opportunity for a more optimal turbine design for a REAT system.
Journal Article

Experimental Evaluation of Advanced Turbocharger Performance on a Light Duty Diesel Engine

2013-04-08
2013-01-0920
For diesel engines to meet current and future emissions levels, the amount of EGR required to reach these levels has increased dramatically. This increased EGR has posed big challenges for conventional turbocharger technology to meet the higher emissions requirements while maintaining or improving other vehicle attributes, to the extent that some OEMs resort to multiple turbocharger configurations. These configurations can include parallel, series sequential, or parallel - series turbocharger systems, which would inevitably run into other issues, such as cost, packaging, and thermal loss, etc. This study, as part of a U.S. Department of Energy (USDoE) sponsored research program, is focused on the experimental evaluation of the emission and performance of a modern diesel engine with an advanced single stage turbocharger.
X