Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Modeling Transient Fuel Effects with Variable Cam Timing

The physics of the mixture preparation process plays a critical role in transient engine control, a key enabler for satisfying increasingly stringent emissions requirements. This paper presents a fully transient, coupled model in Modelica for the liquid fuel behavior and thermodynamic engine cycle including thermal effects for a port fuel injection engine. Details of both the liquid fuel transport and cycle simulation models are provided. The integrated model is used to examine the effects of variable cam timing on the transient fuel behavior including comparisons between simulation results and experimental data under a variety of engine operating conditions.
Journal Article

Diesel EGR Cooler Fouling

The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Applications of CFD Modeling in GDI Engine Piston Optimization

This paper describes a CFD modeling based approach to address design challenges in GDI (gasoline direct injection) engine combustion system development. A Ford in-house developed CFD code MESIM (Multi-dimensional Engine Simulation) was applied to the study. Gasoline fuel is multi-component in nature and behaves very differently from the single component fuel representation under various operating conditions. A multi-component fuel model has been developed and is incorporated in MESIM code. To apply the model in engine simulations, a multi-component fuel recipe that represents the vaporization characteristics of gasoline is also developed using a numerical model that simulates the ASTM D86 fuel distillation experimental procedure. The effect of the multi-component model on the fuel air mixture preparations under different engine conditions is investigated. The modeling approach is applied to guide the GDI engine piston designs.
Technical Paper

Engine Cycle Simulation of Ethanol and Gasoline Blends

Ethanol is one of many alternative transportation fuels that can be burned in internal combustion engines in the same ways as gasoline and diesel. Compared to hydrogen and electric energy, ethanol is very similar to gasoline in many aspects and can be delivered to end-users by the same infrastructures. It can be produced from biomass and is considered renewable. It is expected that the improvement in fuels over the next 20 years will be by blending biomass-based fuels with fossil fuels using existing technologies in present-day automobiles with only minor modifications, even though the overall costs of using biomass-based fuels are still considerably higher than conventional fuels. Ethanol may represent a significant alternative fuel source, especially during the transition from fossil-based fuels to more exotic power sources. Mapping engines for flexible fuel vehicles (FFV), however, would be very costly and time consuming, even with the help of model-based engine mapping (MBM).
Journal Article

Effects of Oil Formulation, Oil Separator, and Engine Speed and Load on the Particle Size, Chemistry, and Morphology of Diesel Crankcase Aerosols

The recirculation of gases from the crankcase and valvetrain can potentially lead to the entrainment of lubricant in the form of aerosols or mists. As boost pressures increase, the blow-by flow through both the crankcase and the valve cover increases. The resulting lubricant can then become part of the intake charge, potentially leading to fouling of intake components such as the intercooler and the turbocharger. The entrained aerosol which can contain the lubricant and soot may or may not have the same composition as the bulk lubricant. The complex aerodynamic processes that lead to entrainment can strip out heavy components or volatilize light components. Similarly, the physical size and numbers of aerosol particles can be dependent upon the lubricant formulation and engine speed and load. For instance, high rpm and load may increase not only the flow of gases but the amount of lubricant aerosol.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Technical Paper

Macroscopic Model of the D86 Fuel Volatility Procedure

A model has been developed to predict quantitatively the results of the ASTM D86 fuel distillation procedure. The model uses material and energy balances to treat the procedure as a two stage unsteady-state distillation coupled with an air-filled continuous stirred-tank reactor (CSTR). Heat is removed from the second stage to simulate convection losses from the experimental apparatus. The model requires as inputs the fuel composition and the physical properties of all components (vapor phase heat capacity, vapor pressure, critical properties, density, molecular weight, solubility parameter). Correlations were used to approximate other needed properties. Liquid-phase activity coefficients were calculated with the UNIFAC model. Heat losses were modeled with a correlation from the literature. The model was validated by comparing predictions to experimental measurements on a seven-component model fuel. Agreement was extremely good across the entire range of volume fractions distilled.
Technical Paper

Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine

EGR coolers are mainly used on diesel engines to reduce intake charge temperature and thus reduce emissions of NOx and PM. Soot and hydrocarbon deposition in the EGR cooler reduces heat transfer efficiency of the cooler and increases emissions and pressure drop across the cooler. They may also be acidic and corrosive. Fouling has been always treated as an approximate factor in heat exchanger designs and it has not been modeled in detail. The aim of this paper is to look into fouling formation in an EGR cooler of a diesel engine. A 1-D model is developed to predict and calculate EGR cooler fouling amount and distribution across a concentric tube heat exchanger with a constant wall temperature. The model is compared to an experiment that is designed for correlation of the model. Effectiveness, mass deposition, and pressure drop are the parameters that have been compared. The results of the model are in a good agreement with the experimental data.
Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Experimental Evaluation of Advanced Turbocharger Performance on a Light Duty Diesel Engine

For diesel engines to meet current and future emissions levels, the amount of EGR required to reach these levels has increased dramatically. This increased EGR has posed big challenges for conventional turbocharger technology to meet the higher emissions requirements while maintaining or improving other vehicle attributes, to the extent that some OEMs resort to multiple turbocharger configurations. These configurations can include parallel, series sequential, or parallel - series turbocharger systems, which would inevitably run into other issues, such as cost, packaging, and thermal loss, etc. This study, as part of a U.S. Department of Energy (USDoE) sponsored research program, is focused on the experimental evaluation of the emission and performance of a modern diesel engine with an advanced single stage turbocharger.
Technical Paper

Development of a CAE Method for Predicting Vehicle Launch Performance with Various VCT Strategies

Powertrain and vehicle technology is rapidly changing to meet the ever increasing demands of customers and government regulations. In some cases technologies that are designed to improve one attribute may impact others or interact with other design decisions in unexpected ways. Understanding the interactions and optimizing the transient performance at the vehicle level may require controls and calibration that is not available until late in the vehicle development process, after hardware changes are no longer possible. As a result, an efficient, up front, CAE process for assessing the interaction of various design choices on transient vehicle behavior is desirable. Building, calibrating and validating a vehicle system model with full controls and a mature calibration is very time consuming and often requires significant experimental data that is not available until it is too late to make hardware changes.
Technical Paper

Transient Fuel Modeling and Control for Cold Start Intake Cam Phasing

Advancing intake valve timing shortly after engine crank and run-up can potentially reduce vehicle cold start hydrocarbon (HC) emissions in port fuel injected (PFI) engines equipped with intake variable cam timing (iVCT). Due to the cold metal temperatures, there can be significant accumulation of liquid fuel in the intake system and in the cylinder. This accumulation of liquid fuel provides potential sources for unburned hydrocarbons (HCs). Since the entire vehicle exhaust system is cold, the catalyst will not mitigate the release of unburned HCs. By advancing the intake valve timing and increasing valve overlap, liquid fuel vaporization in the intake system is enhanced thereby increasing the amount of burnable fuel in the cylinder. This increase in burnable HCs must be countered by a reduction in injector-delivered fuel via a compensator that reacts to cam movement.
Technical Paper

Modeling Transient Fuel Effects with Alternative Fuels

As regulations become more stringent, transient fuel control becomes extremely important for meeting emissions requirements in a cost-effective manner. Significant modeling work has been performed for a variety of conventional gasolines in port fuel injected (PFI) engines. This paper describes an extension of previous modeling work for alternative fuels. The paper first details the application of a distillation model to create the multi-component fuel models used in the simulations. The fuel models are then used in the transient Four Puddle Model to simulate the coupled liquid fuel and thermal/thermodynamic processes in the engine. Simulation results from the model are compared with dynamometer data over a transient, warm-up test.
Technical Paper

Analytical Assessment of Simplified Transient Fuel Tests for Vehicle Transient Fuel Compensation

Good air/fuel ratio (A/F) control is essential to high quality combustion performance, drivability and emissions in internal combustion engine powered vehicles. Cold start and transient fuel wall wetting effects cause significant A/F control challenges in port fuel injected (PFI) engines. Transient fuel compensation (TFC) strategies are used to help control the A/F during cold starts and transient load and RPM conditions for good vehicle performance, but developing optimum TFC strategies and calibrations in a vehicle with many competing effects is very difficult. Thus, simplified transient tests such as fuel or throttle perturbation tests are often used to develop and validate new strategies or calibrations for use in vehicle. This paper will illustrate the use of a validated physical model to analytically assess the value of fuel and throttle perturbation tests for developing a TFC calibration for vehicle use.
Technical Paper

Modeling the Evaporative Emissions of Oil-Fuel Mixtures

Motor vehicle hydrocarbon evaporative emissions are a crucial part of emissions regulations, and increasingly-stringent regulations stipulate essentially zero fuel-based hydrocarbon evaporative emissions. In port fuel injected engines, there is the potential for accumulation of PCV effluent in the intake system under certain vehicle operating conditions. The majority of this effluent is oil, but a percentage has been shown to be fuel. The percentage of fuel in this oil-fuel mixture in the intake is at a minimum equivalent to the fuel dilution level of the crankcase oil, and at times can be higher due to other sources of fuel, and fuel vapor, in the intake. This accumulation of liquid oil-fuel mixture can be a contributor of hydrocarbon evaporative emissions migrating out of the air induction system when subjected to transient temperatures while the engine is off.