Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Application of Steady-Flow Loss Correlations to Intake Manifold Design

1993-03-01
930608
Application of steady-flow correlations to characterize flow losses in complex piping systems is well established for non-transient fluid transport engineering. As a result, the literature contains numerous correlations relating flow (or pressure) losses to the piping system geometry. The present study applies these correlations to an intake manifold of a four cylinder engine to identify regions in the manifold that contribute most significantly to the system flow loss; results showed that the primary runner entrances accounted for over half of the total system loss. With this finding, four manifolds were designed and tested on a steady-flow bench and on an engine. Reduced flow losses resulted in improved peak engine performance at the expense of low speed volumetric efficiency. Primary runner pressures at peak performance conditions were analyzed in both the time and frequency domain.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

1995-05-01
951260
Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
X