Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Geometric and Thermal Characterization of a Machining Center Under Dry and Wet Conditions

Quantification of geometric and thermal characteristics of machinery is critical to the improvements in part dimensional accuracy and reduction of part to part dimensional variations in a high volume manufacturing operations. Assembly and alignment of different components in a machine result in geometric error over the machining volume of a machine. These errors, once quantified, can be corrected through offsets in positioning controls. The objectives of a good machine design should be to minimize the geometric errors during fabrication and assembly of the components, and replacement of the wear prone components during maintenance of the machine in operations. Thermal errors in machines are even more critical and have not been addressed sufficiently in improving part to part dimensional variations.
Technical Paper

Enhanced Machining Center Accuracy Through Real Time Error Compensation

There is an ever increasing demand on part quality and tighter tolerances for machining of components in high volume manufacturing. A major source of problem in the machine tools is the thermally induced error due to thermal gradients and uneven heating and expansion of various machine components. Current practice of manufacturing precision parts involves periodic gaging of parts, whereby, production is interrupted and manual compensating offsets are input to the controller. Also, additional production costs are introduced due to requirement of initial warm up cycles without cutting parts and utilization of chillers for temperature controlled coolants. In this paper, a methodology is described for automatic compensation for thermal error by means of components/locations temperature profile and calculated error between the tool tip and the workpiece.