Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Lean NOx Trap Desulfation Through Rapid Air Fuel Modulation

A novel method of desulfating lean NOx traps has been developed. Rapid, large amplitude modulation of the air to fuel ratio creates an exotherm of approximately 300°C in the LNT. AFR modulation results in oxidant and reductant breakthough in a three-way catalyst mounted upstream of the LNT. During lean modulation, oxygen is stored in the LNT. During rich modulation, the reductant reacts catalytically with the stored oxygen in the LNT, generating a substantial exotherm. Rich and lean AFR events are selected commensurate with the number of cylinders in the engine, resulting in each cylinder having exactly the same AFR history. This permits a deterministic programming of spark advance and precise coordination of spark advance with the transient fueling effect. The spark advance is retarded for the rich events and increases stepwise for groups of lean events. This strategy results in minimal disturbances in the engine imep.
Technical Paper

Transient A/F Estimation and Control Using a Neural Network

A new estimator for IC engine A/F ratio is described. A/F ratio is important for engine operation since it determines the quantities of engine emissions, such as HC, CO, NOx, the conversion efficiency of catalyst systems, and the engine combustion stability. The A/F ratio estimator described in this paper is based on a fundamental metric that relies on inducing and detecting crankshaft speed fluctuations caused by modulating the engine's fuel injection pulse widths. Fuel pulse width modulation varies the instantaneous combustion A/F ratio crankshaft velocity. Synchronous measurement of crankshaft velocity provides a metric that, when used with other engine state variables as inputs to a conventional neural network, can accurately estimate A/F ratio. The estimator provides A/F information when a physical sensor is not available.
Technical Paper

Optimal A/F Ratio Estimation Model (Synthetic UEGO) for SI Engine Cold Transient AFR Feedback Control

A new method to estimate instantaneous A/F ratio and use the estimation as a feedback signal to control AFR during cold transients, before the oxygen sensor is functional, has been realized by a on-board PCM for a vehicle with a 4.6L, V8, PFI engine [4, 6]. Different AFRs cause variations in flame propagation, causing fluctuations in the effective torque. When a known AFR disturbance is induced into an engine system, a corresponding crankshaft angular velocity fluctuation can be detected. A variable derived from this physical phenomenon can be used to characterize the problem. The optimal fuel perturbation signal is designed by a relaxation concept, and the system model is determined by employing a dual-direction screening multivariate stepwise regression analysis. The estimated AFR is used by the PCM in a closed loop control to correct the fuel during cold transients.