Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Techniques for Analyzing Thermal Deactivation of Automotive Catalysts

1992-10-01
922336
Automotive three-way catalysts (TWC) were characterized using temperature-programmed reduction (TPR), x-ray diffraction (XRD), Raman spectroscopy, chemisorption measurements and laboratory activity measurements. Capabilities and limitations of these standard analytical techniques for the characterization of production-type automotive catalysts are pointed out. With the exception of chemisorption techniques, all appear to have general utility for analyzing exhaust catalysts. The techniques were used to show that the noble metals and ceria in fresh Pt/Rh and Pd/Rh catalysts are initially highly dispersed and contain a mixture of interacting and non-interacting species. Thermal aging of these catalysts (in the reactor or vehicle) caused both precious metal and ceria particles to sinter, thereby decreasing the interaction between the two.
Technical Paper

Effects of Oil-Derived Contaminants on Emissions from TWC-Equipped Vehicles

2000-06-19
2000-01-1881
Advances in fuel control strategy, emission system architecture, and catalyst technology have led to dramatic decreases in exhaust emissions in recent years. To continue this trend, especially at high mileages, the impact of engine oil derived contaminants will need to be minimized. In this study, the deactivating effects of oil-derived contaminants on advanced catalyst technologies was assessed using an oxalic acid washing technique to remove phosphorus and other oil-derived contaminants from fleet-aged automotive three-way exhaust catalysts. Acid washing removed most of the phosphorus on the catalyst (chief poison associated with decomposition of the engine oil antiwear additive ZDDP) without significantly affecting other catalyst properties. Catalysts from eight high-mileage vehicles were analyzed, representing four vehicle families.
X