Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Future Development of EcoBoost Technology

2012-05-10
Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
Technical Paper

Finite Element Model Development of Sid-Iis

1999-10-10
99SC06
This paper describes the development and validation of a finite element model of the SID-IIs beta+-prototype dummy using a nonlinear explicit finite element code. The geometry of the SID-IIs dummy is modeled with shell and solid elements from digital scans. The material properties are derived from dynamic tests and the model validation is conducted on component, subassembly and full assembly levels. Component level validation of the head/neck, arm, ribs, and lumbar spine is presented. The model validation of the thorax and pelvis subassemblies as well as pendulum calibration tests (shoulder, thorax, abdomen, and pelvis) and rigid-wall sled tests of the fully assembled dummy mode is also presented. The model response compares favorably with experimental data and provides a reasonable level of confidence in the model biofidelity.
Technical Paper

Investigating Ankle Injury Mechanisms in Offset Frontal Collisions Utilizing Computer Modeling and Case-Study Data

1999-10-10
99SC14
A significant number of documented ankle injuries incurred in automobile accidents indicate some form of lateral loading is present to either cause or influence injury. A high percentage of these cases occur in the absence of occupant compartment intrusion. To date, no specific ankle injury mechanism has been identified to explain these types of injuries. To investigate this problem, several resources were used including full-scale crash test data, finite element models, and case study field data. Results from car-to-car, offset frontal crash tests indicate a significant lateral acceleration (10-18 g) occurs at the same time as the peak in longitudinal acceleration. The combined loading condition results in a significant lateral force being applied to the foot-ankle region while the leg region is under maximum compression.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

Inclusion of Crashworthiness in Concept Design

1985-01-01
856090
A side impact study carried out on a particular vehicle has been described and used as a case study to represent a methodology for incorporating side crashworthiness in a new vehicle concept design. In the automotive design environment, it has proved difficult to include side crashworthiness satisfactorily in the initial stages of the passenger car design. Lack of vehicle data at such a stage does not allow detailed finite element analysis. It is, however, possible to suggest the required collapse properties for individual components within the structure so that, through a coarse finite element idealization, a design for crashworthiness can be carried out. The crash properties of the structure can be arrived at by parametric studies of individual components that are absorbing the major portion of the crash energy.
Technical Paper

The Development of Ford's Natural Gas Powered Ranger

1985-11-11
852277
Operation of America's first factory built vehicles modified to operate on natural gas began in April, 1984, when Ford Motor Company delivered the first of 27 specially equipped 1984 Ranger pickup trucks to 25 major utility and natural gas related companies in the United States and Canada. In addition to the fuel system, modifications to these test vehicles include a 12.8:1 compression ratio engine and a unique distributor calibration to provide performance similar to the gasoline powered vehicle. The fuel tanks are significantly more expensive than gasoline tanks and remain one of the major cost issues with a natural gas powered vehicle. There are however, no unresolvable technological issues that would prevent motor vehicles from operating economically and efficiently on natural gas.
Technical Paper

Methodology for Developing and Validating Air Brake Tubes for Commercial Vehicles

2012-10-02
2012-36-0272
The pneumatic air brake system for heavy commercial trucks is composed by a large number of components, aiming its proper work and compliance with rigorous criteria of vehicular safety. One of those components, present along the whole vehicle, is the air brake tube, ducts which feed valves and reservoirs with compressed air, carrying signals for acting or releasing the brake system. In 2011, due to a lack of butadiene in a global scale, the manufacturing of these tubes was compromised; as this is an important raw material present on the polymer used so far, PA12. This article introduces the methodology of selecting, developing and validating in vehicle an alternative polymer for this application. For this purpose, acceptance criteria have been established through global material specifications, as well as bench tests and vehicular validation requirements.
Technical Paper

High Chest Accelerations in the Hybrid III Dummy Due to Interference in the Hip Joint

1994-11-01
942224
The design of the Hybrid III dummy's hip joint limits the allowable relative rotation between the dummy's lower torso and femur assembly. This limited motion is thought to cause abnormally high chest accelerations in some front barrier crash tests. This paper describes static testing and computer modeling to quantify the hip joint range of motion and its effect on dummy chest accelerations. To verify model results, a series of HYGE sled tests were completed using modified hip joints.
Technical Paper

Head Injury Potential Assessment in Frontal Impacts by Mathematical Modeling

1994-11-01
942212
The potential of head injury in frontal barrier impact tests was investigated by a mathematical model which consisted of a finite element human head model, a four segments rigid dynamic neck model, a rigid body occupant model, and a lumped-mass vehicle structure model. The finite element human head model represents anatomically an average adult head. The rigid body occupant model simulates an average adult male. The structure model simulates the interior space and the dynamic characteristics of a vehicle. The neck model integrates the finite element human head to the occupant body to give a more realistic kinematic head motion in a barrier crash test. Model responses were compared with experimental cadaveric data and vehicle crash data for the purpose of model validation to ensure model accuracy. Model results show a good agreement with those of the tests.
Technical Paper

A General Formulation for Topology Optimization

1994-11-01
942256
Topology optimization is used for obtaining the best layout of vehicle structural components to achieve predetermined performance goals. Unlike the most common approach which uses the optimality criteria methods, the topology design problem is formulated as a general optimization problem and is solved by the mathematical programming method. One of the major advantages of this approach is its generality; thus it can solve various problems, e.g. multi-objective and multi-constraint problems. The MSC/NASTRAN finite element code is employed for response analyses. Two automotive examples including a simplified truck frame and a truck frame crossmember are presented.
Technical Paper

Diesel Fuel Delivery Module for Light Truck Applications

1993-11-01
932980
This paper reviews the design and development of a self-filling, in-tank fuel system reservoir intended for use in diesel engine vehicle applications. This new idea eliminates engine driveability concerns (stumbles, hesitations, stalling, etc.) associated with an inconsistent supply of fuel from the fuel tank to the engine, particularly during sudden vehicle maneuvers and with low fuel tank conditions.
Technical Paper

Impact of Computer Aided Engineering on Ford Motor Company Light Truck Cooling Design and Development Processes

1993-11-01
932977
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

Scavenging of a Firing Two-Stroke Spark-Ignition Engine

1994-03-01
940393
Current demands for high fuel efficiency and low emissions in automotive powerplants have drawn attention to the two-stroke engine configuration. The present study measured trapping and scavenging efficiencies of a firing two-stroke spark-ignition engine by in-cylinder gas composition analysis. Intermediate results of the procedure included the trapped air-fuel ratio and residual exhaust gas fraction. Samples, acquired with a fast-acting electromagnetic valve installed in the cylinder head, were taken of the unburned mixture without fuel injection and of the burned gases prior to exhaust port opening, at engine speeds of 1000 to 3000 rpm and at 10 to 100% of full load. A semi-empirical, zero-dimensional scavenging model was developed based on modification of the non-isothermal, perfect-mixing model. Comparison to the experimental data shows good agreement.
Technical Paper

The Effect of MMT on the OBD-11 Catalyst Efficiency Monitor

1993-10-01
932855
The effect of MMT on the OBD-II catalyst efficiency monitor has been investigated. The results conclusively show that manganese which is deposited onto the catalyst during the combustion of MMT- containing fuel provides for an increased level of catalyst oxygen storage capacity. This added oxygen storage was found to result in a reduced rear EGO sensor response and caused malfunctioning catalysts to be incorrectly diagnosed by the OBD-II catalyst efficiency monitor.
Technical Paper

A New Approach for Weight Reduction in Truck Frame Design

1993-11-01
933037
A new, systematic, sensitivity based design process for weight reduction is presented. Traditionally, a trial and error method is used when a design fails to meet the weight and the design criteria, which often conflict. This old approach not only is time and cost consuming but also does not provide insight into structural behavior. This proposed process uses state-of-the-art technologies such as design sensitivity analysis, numerical optimization, graphical user interface, etc. It handles multi-discipline design criteria simultaneously and provides design engineers insight into structural responses for frequency, durability, and stiffness concerns and a means for systematic weight reduction and quality improvement. The new design process has been applied for the weight reduction of advanced truck frame designs. Results show that a significant weight savings has been achieved while all design criteria are met.
Technical Paper

Design Considerations for Natural Gas Vehicle Catalytic Converters

1993-11-01
933036
Bench reactor experiments were carried out to investigate the effects of operating temperature, precious metal loading, space velocity, and air-fuel (A/F) ratio on the performance of palladium (Pd) catalysts under simulated natural gas vehicle (NGV) exhaust conditions. The performance of these catalysts under simulated gasoline vehicle (GV) conditions was also investigated. In the case of simulated NGV exhaust, where methane was used as the prototypical hydrocarbon (HC) species, peak three-way conversion was obtained under richer conditions than required with simulated GV exhaust (propane and propene HC species). Moreover, the hydrocarbon efficiency of the catalyst under simulated NGV exhaust conditions was more sensitive to both A/F ratio and perturbations in A/F ratio than the HC efficiency under GV exhaust conditions.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Technical Paper

Ford Motor Companys' new Torqshift 6 Automatic Transmission for Super Duty F250-F550 Truck

2010-04-12
2010-01-0859
Ford developed the 6R140 TorqShift six-speed transmission for the Ford F-series SuperDuty trucks. The 6R140 transmission is specifically designed to manage the increased torque produced by the 6.7-liter Power Stroke V-8 turbocharged diesel engine. It is also matched with the 6.2-liter V-8 gasoline engine. By design, the new 6R140 transmission seamlessly delivers the enormous low-rpm torque produced by the new diesel engine and efficiently manages the higher rpm of the new gasoline engine.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
X