Refine Your Search

Topic

Author

Search Results

Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Technical Paper

A Development Process to Improve Vehicle Sound Quality

1991-05-01
911079
Vehicle sound quality has become an important basic performance requirement. Traditionally, automobile noise studies were focused on quietness. It is now necessary for the automobile to be more than quiet. The sound must be pleasing. This paper describes a development process to improve both vehicle noise level and sound quality. Formal experimental design techniques were utilized to quantify various hardware effects. A-weighted sound pressure level, Speech Intelligibility, and Composite Rating of Preference were the three descriptors used to characterize the vehicle's sound quality. Engineering knowledge augmented with graphical and statistical techniques were utilized during data analysis. The individual component contributions to each of the sound quality descriptors were also quantified in this study.
Technical Paper

Two Piece Composite Truck Cab

1990-02-01
900306
This report is a comprehensive investigation into the use of resin transfer molded glass fiber reinforced plastics in a structural application. A pickup truck cab structure is an ideal application for plastic composites. The cab is designed to fit a production Ranger pickup truck and uses carryover frame and front end structure. The cab concept consists primarily of two molded pieces. This design demonstrates extensive parts integration and allows for low-cost tooling, along with automated assembly.
Technical Paper

Power Steering Noise Characterization and Evaluation

2008-03-30
2008-36-0550
Each more the consumer uses the vehicle noise, vibration, and harshness (NVH) attributes to define the vehicle model when purchasing a car, so the sound quality development is very important to guarantee the automaker success in a competitive market. Several vehicle components contribute to the consumer sound quality perception, as engine, gearbox and exhaust systems. So those components improvement is necessary in order to enrich the sound perception. In this article will be developed a case study that evaluates the contribution and the characteristics of the irradiated noise from the power steering system, which was classified as moan, whine and hiss noise, defines objectively each phenomena and evaluate the proposed systems.
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Technical Paper

Ford Motor Companys' new Torqshift 6 Automatic Transmission for Super Duty F250-F550 Truck

2010-04-12
2010-01-0859
Ford developed the 6R140 TorqShift six-speed transmission for the Ford F-series SuperDuty trucks. The 6R140 transmission is specifically designed to manage the increased torque produced by the 6.7-liter Power Stroke V-8 turbocharged diesel engine. It is also matched with the 6.2-liter V-8 gasoline engine. By design, the new 6R140 transmission seamlessly delivers the enormous low-rpm torque produced by the new diesel engine and efficiently manages the higher rpm of the new gasoline engine.
Technical Paper

Gear Lever Sound Quality Evaluation

2010-10-06
2010-36-0369
Vehicle sound quality has become lately one of the main topics of study in the automotive industry which is associated with the quality of the product. Into the automotive development the static operational sound quality is one of the attributes that is considered. The sounds produced through the manipulation of items like the doors and interior components (windows, seats, safety belts, windshield wipers, and others) generated for safety and warning purposes are items related to the vehicle quality for customers. Those sounds based on relative level of intensity, duration, harmony and degree of contribution are elements that the customer will retain in mind, an overall quality impression. The sound produced during gear lever manipulation is important to the customer in order that the event should transmit low intensity and robust and soft impression.
Technical Paper

Correlating Stressed Environmental Testing of Structural Composites to Service

2001-03-05
2001-01-0094
A compact in-situ tensile stress fixture was designed for the study of the combined effects of stress and automotive environments on structural glass fiber-reinforced composite materials. With this fixture, a standardized 300 hour laboratory screening test was developed to compare the residual property loss of composite materials due to concurrent exposure to stress and environment. It is of great importance that the data gathered in the laboratory have correlation to on-vehicle (in-service) performance, and that both lab and real world data be taken with a test system (in-situ test fixtures) capable of providing accurate and consistent results under either test condition.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

2001-04-30
2001-01-1505
Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

A New Method for Calculating Fluctuation Strength in Electric Motors

2001-04-30
2001-01-1588
In assessing the sound quality of electric motors (e.g., seat, mirror, and adjustable pedal motors), the sensation of Fluctuation Strength - a measure of intensity or frequency variation - has become important. For electric motors, it is typically caused by variation in the load, creating frequency modulation in the sound. An existing method for calculating Fluctuation Strength proved useful initially, but more extensive testing identified unacceptable performance. There were unacceptable levels of both false positives and false negatives. A new method is presented, which shows improved correlation with perceived fluctuation in sounds. Comparisons are made to the previous method and improvement is shown through examples of objective-subjective correlation for both seat motor sounds and adjustable pedal motor sounds. The new method is also shown to match subjective data from which the original measure of Fluctuation Strength was derived.
Technical Paper

Methodology for Developing and Validating Air Brake Tubes for Commercial Vehicles

2012-10-02
2012-36-0272
The pneumatic air brake system for heavy commercial trucks is composed by a large number of components, aiming its proper work and compliance with rigorous criteria of vehicular safety. One of those components, present along the whole vehicle, is the air brake tube, ducts which feed valves and reservoirs with compressed air, carrying signals for acting or releasing the brake system. In 2011, due to a lack of butadiene in a global scale, the manufacturing of these tubes was compromised; as this is an important raw material present on the polymer used so far, PA12. This article introduces the methodology of selecting, developing and validating in vehicle an alternative polymer for this application. For this purpose, acceptance criteria have been established through global material specifications, as well as bench tests and vehicular validation requirements.
Technical Paper

New Methodology to Improve the Engine Oil Level Indication in Commercial Trucks Assembly at End of Production Line

2011-10-04
2011-36-0164
This article is a new methodology to create a strong and reliable procedure to measure oil level at dealers. Most of time, commercial trucks run full loaded. Engine oil level indication systems are designed to measure oil level at that condition. However commercial trucks are assembled and sold empty and without bodies for trucks. In result of this condition, vehicles with a false indication of low engine oil level are detected at dealers' pre-delivery inspection, resulting in oil addition. This oil addition causes unnecessary costs, since vehicles are produced with maximum oil level. The methodology presented in this study analyzes and treats all variables involved in engine oil level measurements from engine production line until dealers' pre-delivery inspection
Technical Paper

Diesel Fuel Delivery Module for Light Truck Applications

1993-11-01
932980
This paper reviews the design and development of a self-filling, in-tank fuel system reservoir intended for use in diesel engine vehicle applications. This new idea eliminates engine driveability concerns (stumbles, hesitations, stalling, etc.) associated with an inconsistent supply of fuel from the fuel tank to the engine, particularly during sudden vehicle maneuvers and with low fuel tank conditions.
Technical Paper

Impact of Computer Aided Engineering on Ford Motor Company Light Truck Cooling Design and Development Processes

1993-11-01
932977
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

A New Approach for Weight Reduction in Truck Frame Design

1993-11-01
933037
A new, systematic, sensitivity based design process for weight reduction is presented. Traditionally, a trial and error method is used when a design fails to meet the weight and the design criteria, which often conflict. This old approach not only is time and cost consuming but also does not provide insight into structural behavior. This proposed process uses state-of-the-art technologies such as design sensitivity analysis, numerical optimization, graphical user interface, etc. It handles multi-discipline design criteria simultaneously and provides design engineers insight into structural responses for frequency, durability, and stiffness concerns and a means for systematic weight reduction and quality improvement. The new design process has been applied for the weight reduction of advanced truck frame designs. Results show that a significant weight savings has been achieved while all design criteria are met.
Technical Paper

Controlling Panel Noise and Vibration Using Non-Contacting Test Methodologies

1993-05-01
931339
Non-contacting test methodology studies of automotive body components have become a very useful, high resolution and sensitive test technique to engineering personnel. Continuous wave laser holometry, computer aided holometry (CAH), pulsed laser holometry and a scanning laser system were used to image vibration patterns. These methods were selected because of improved data turn-around time in the test development process while having no mass-loading effects on the sheet metal panels. An analysis of the vehicle body structure was conducted to improve the interior body structure sound quality and to reduce road noise presence. An interrogation of the interior noise spectrum identified critical frequencies affecting vehicle NVH. This paper addresses the results of using the aforementioned non-contacting test methods to reduce panel responses by developing an optimum rib section and pattern, and the addition of adhered stiffening materials.
Technical Paper

Synthesis of Powertrain Sounds for Investigations in Roughness

1993-05-01
931333
At a time where customer preference is becoming an important product development criteria, measures which quantify subjectively perceived auditory sensations are becoming useful in developing meaningful sound quality criteria. One proposed measure which has not yet seen a great deal of application to automotive sounds is that which attempts to quantify the sensation of roughness. The applicability of such a proposed measure can be established through a series of subjective experiments. Typically, such experiments involve the presentation and evaluation of a group of sounds which vary in their degree of roughness. In order to generate test sounds, a system for the modeling and synthesis of pawertrain sound has been developed which isolates specific signal components which are known to affect the roughness of a sound.
Technical Paper

Impact of Computer Aided Engineering on Ford Light Truck Cooling Design and Development Processes

1993-04-01
931104
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
X