Refine Your Search

Topic

Affiliation

Search Results

Video

Hybrid Vehicle Battery OBD: Why, Wherefore, and How

2012-02-01
Plug In Charging Systems are mainly responsible for transferring energy from the electric power grid into one or more vehicle energy storage devices (e.g. batteries). A satisfactorily operating Plug in Charging System has the following three key performance characteristics. First, the charge process starts up easily. Second, it completes the charge process within some expected time. Third, it charges efficiently so that excessive amounts of power are not wasted. When a Plug In Charging System malfunction exists and negatively affects one or more of these key performance criteria, it is the responsibility of the OBD monitoring system to identify the fault and notify the customer. The presentation will discuss the key performance characteristics described above and some of the diagnostic strategies used to detect faults. The discussion will also include an overview of MIL illumination and freeze frame storage capabilities.
Video

C-Max Energi - Ford's Plug-In Solution

2011-11-07
Evolving the current state of the art Hybrid Technology for vehicles with plug-in capability will yield three significant results, the displacement of petroleum with electricity for transportation, improved efficiency and reduced emissions. As the technology evolves from the Ford Escape Hybrid Plug-In demo fleet, Ford is in the final stages of development of the C-Max Energi, which will be delivered in 2012 as a highly efficient, full purpose vehicle designed to meet customer expectations without compromise. Presenter Charles Gray, Ford Motor Co.
Video

Ford: Driving Hybrid Efficiency

2012-03-23
Hybrid vehicles in the modern era were developed with a strong primary goal to increase fuel efficiency in the North American market. Over the last 15 years, this market has expanded from zero sales to as high as 3% of total US sales. Most recently, the portfolio of competitive offerings with HEV propulsion systems has grown even more to about 30 models on sale today. Some interesting features and attributes have evolved thru this wider array of products giving the customer much more choice of which characteristics to select to match their needs. Ford�s 3rd generation HEV system will be offered for sale this fall. With it, we have continued our focus on the Fuel Efficiency as the driving force for our efforts. The overall process for the system engineering and some of the relevant subsystem and component contributors to the Fuel Efficiency improvement reflected in the 2013 Model Year Fusion and CMAX Hybrids will be presented. Presenter Charles Gray, Ford Motor Co.
Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Journal Article

The Effects of Sulfur Poisoning and Desulfation Temperature on the NOx Conversion of LNT+SCR Systems for Diesel Applications

2010-04-12
2010-01-0300
A laboratory study was performed to assess the effects of sulfur poisoning and desulfation temperature on the NO conversion of a LNT+(Cu/SCR) in-situ system. Four LNT+(Cu/SCR) systems were aged for 4.5 hours without sulfur at 600, 700, 750, and 800°C using A/F ratio modulations to represent 23K miles of desulfations at different temperatures. NO conversion tests were performed on the LNT alone and on the LNT+SCR system using a 60 s lean/5 s rich cycle. The catalysts were then sulfur-poisoned at 400°C and desulfated four times and re-evaluated on the 60/5 tests. This test sequence was repeated 3 more times to represent 100K miles of desulfations. After simulating 23K miles of desulfations, the Cu-based SCR catalysts improved the NO conversion of the LNT at low temperatures (e.g., 300°C), although the benefit decreased as the desulfation temperature increased from 600°C to 800°C.
Journal Article

Diagnostics Design Process for Developmental Vehicles

2010-04-12
2010-01-0247
In this paper a diagnostic design process is proposed for developmental vehicles where mainstream design process is not well-suited. First a review of current practice in on-board vehicle fault diagnostics design is presented with particular focus on the application of this process to the development of the Ford Escape Hybrid Electric Vehicle (HEV) program and a demonstration Fuel Cell Electric Vehicle (FCEV) program. Based on the review and evaluation of these experiences, a new tool for diagnostics design is proposed that promises to make the design more traceable, to reduce the repetition of work, and to improve understandability and reuse.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Laboratory and Vehicle Demonstration of “2nd-Generation” LNT + in-situ SCR Diesel NOx Emission Control Systems

2010-04-12
2010-01-0305
This study extends research previously reported from our laboratory [SAE 2009-01-0285] on diesel NOx control utilizing a new generation of Lean NOx Trap (LNT) plus in-situ Selective Catalytic Reduction (SCR) catalyst systems. Key findings from this work include 1) evidence for a “non-ammonia” reduction pathway over the SCR catalyst (in addition to the conventional ammonia pathway), 2) high NOx conversions utilizing LNT formulations with substantially lower platinum group metal (PGM) loadings than utilized in earlier systems, 3) ability of the downstream SCR catalyst to maintain high overall system NOx efficiency with aged LNTs, and 4) effectiveness of both Cu- and Fe-zeolite SCR formulations to enhance overall system NOx efficiency. FTP NOx conversion efficiencies in excess of 95% were obtained on two light-duty vehicle platforms with lab-aged catalyst systems, thus showing potential of the LNT+SCR approach for achieving the lowest U.S. emissions standards
Journal Article

A Comparative Benchmark Study of using Different Multi-Objective Optimization Algorithms for Restraint System Design

2014-04-01
2014-01-0564
Vehicle restraint system design is a difficult optimization problem to solve because (1) the nature of the problem is highly nonlinear, non-convex, noisy, and discontinuous; (2) there are large numbers of discrete and continuous design variables; (3) a design has to meet safety performance requirements for multiple crash modes simultaneously, hence there are a large number of design constraints. Based on the above knowledge of the problem, it is understandable why design of experiment (DOE) does not produce a high-percentage of feasible solutions, and it is difficult for response surface methods (RSM) to capture the true landscape of the problem. Furthermore, in order to keep the restraint system more robust, the complexity of restraint system content needs to be minimized in addition to minimizing the relative risk score to achieve New Car Assessment Program (NCAP) 5-star rating.
Journal Article

Power Management of Hybrid Electric Vehicles based on Pareto Optimal Maps

2014-04-01
2014-01-1820
Pareto optimal map concept has been applied to the optimization of the vehicle system control (VSC) strategy for a power-split hybrid electric vehicle (HEV) system. The methodology relies on an inner-loop optimization process to define Pareto maps of the best engine and electric motor/generator operating points given wheel power demand, vehicle speed, and battery power. Selected levels of model fidelity, from simple to very detailed, can be used to generate the Pareto maps. Optimal control is achieved by applying Pontryagin's minimum principle which is based on minimization of the Hamiltonian comprised of the rate of fuel consumption and a co-state variable multiplied by the rate of change of battery SOC. The approach delivers optimal control for lowest fuel consumption over a drive cycle while accounting for all critical vehicle operating constraints, e.g. battery charge balance and power limits, and engine speed and torque limits.
Journal Article

A Stochastic Bias Corrected Response Surface Method and its Application to Reliability-Based Design Optimization

2014-04-01
2014-01-0731
In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affect the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. This paper further investigates the Bayesian inference based model extrapolation method which is previously proposed by the authors, and provides a systematic and integrated stochastic bias corrected model extrapolation and robustness design process under uncertainty. A real world vehicle design example is used to demonstrate the validity of the proposed method.
Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Journal Article

Towards an Optimum Aftertreatment System Architecture

2015-01-14
2015-26-0104
Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Journal Article

Laboratory and Vehicle Demonstration of “2nd-Generation” LNT + in-situ SCR Diesel Emission Control Systems

2011-04-12
2011-01-0308
Diesel NOx emissions control utilizing combined Lean NOx Trap (LNT) and so-called passive or in-situ Selective Catalytic Reduction (SCR) catalyst technologies (i.e. with reductant species generated by the LNT) has been the subject of several previous papers from our laboratory [ 1 - 2 ]. The present study focuses on hydrocarbon (HC) emissions control via the same LNT+SCR catalyst technology under FTP driving conditions. HC emissions control can be as challenging as NOx control under both current and future federal and California/Green State emission standards. However, as with NOx control, the combined LNT+SCR approach offers advantages for HC emission control over LNT-only aftertreatment. The incremental conversion obtained with the SCR catalyst is shown, both on the basis of vehicle and laboratory tests, to result primarily from HC adsorbed on the SCR catalyst during rich LNT purges that reacts during subsequent lean engine operation.
Journal Article

Optimization Strategies to Explore Multiple Optimal Solutions and Its Application to Restraint System Design

2012-04-16
2012-01-0578
Design optimization techniques are widely used to drive designs toward a global or a near global optimal solution. However, the achieved optimal solution often appears to be the only choice that an engineer/designer can select as the final design. This is caused by either problem topology or by the nature of optimization algorithms to converge quickly in local/global optimal or both. Problem topology can be unimodal or multimodal with many local and/or global optimal solutions. For multimodal problems, most global algorithms tend to exploit the global optimal solution quickly but at the same time leaving the engineer with only one choice of design. The paper explores the application of genetic algorithms (GA), simulated annealing (SA), and mixed integer problem sequential quadratic programming (MIPSQP) to find multiple local and global solutions using single objective optimization formulation.
X