Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evaluation of Turbocharger Power Assist System Using Optimal Control Techniques

In the paper we employ numerical optimal control techniques to define the best transient operating strategy for a turbocharger power assist system (TPAS). A TPAS is any device capable of bi-directional energy transfer to the turbocharger shaft and energy storage. When applied to turbocharged diesel engines, the TPAS results in significant reduction of the turbo-lag. The optimum transient strategy is capable of improving the vehicle acceleration performance with no deterioration in smoke emissions. These benefits can be attained even if the net energy contribution by the TPAS during the acceleration interval is zero, i.e., all energy is re-generated and returned back to the energy storage by the end of the acceleration interval. At the same time the total fuel consumption during the acceleration interval may be reduced.
Technical Paper

Boosted Gasoline Direct Injection Engines: Comparison of Throttle and VGT Controllers for Homogeneous Charge Operation

In this paper, we compare controllers for the electronic throttle and variable geometry turbocharger in boosted stoichiometric gasoline direct injection engines. The control objectives are fast response and small overshoot of the intake manifold pressure. The problem is treated within the multi-objective optimization framework, applied to a simulation model of the engine. Pareto optimal fronts are constructed for each of the controllers and compared to each other. The best controller is thereby identified and further options to improve its response via preview-based control are discussed.