Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Near Infrared Absorption Sensor for In-Vehicle Determination of Automotive Fuel Composition

1992-02-01
920698
The use of methanol as an automotive fuel can be expected to become significant in North America during the 1990's. Methanol fuel will be sold as 85%/15% MeOH/gasoline mixture. Limited availability of methanol fuel in some parts of North America will require methanol vehicles to be dynamically adaptable to fuel compositions ranging from 85% methanol to 100% gasoline. One approach to meeting such a requirement is a sensor that is mounted somewhere in the vehicle's fuel handling system that determines the concentration of methanol in the fuel flowing to the engine. The output of the sensor is supplied to the computer controlled engine management system that sets engine operating parameters. A sensor based on near infrared absorbance is the subject of this paper.
Technical Paper

Polymer Additives as Mist Suppressants in Metalworking Fluids Part I: Laboratory and Plant Studies - Straight Mineral Oil Fluids

1995-02-01
950245
Ambient oil mist levels in automotive manufacturing plants where coolant is used as a metalworking fluid is an on-going concern, in particular, its effect on worker's breathing zone air quality. To find a means suppressing oil mist from being generated during these operations was studied in the laboratory, where several polymer additives were analyzed. It was found that a small amount (less than 100 ppm) of polyisobutylene (PIB) was extremely effective in suppressing mist formation by increasing the oil droplet size of typical straight mineral oil aerosols generated. Subsequent plant pilot tests confirmed these results, yielding 70-90% oil mist reductions using only 20-100 ppm PIB additions. In addition, no adverse impact was observed on the machined part quality.
Technical Paper

In-Vehicle Engine Coolant Void Fraction and De-aeration Monitoring Using a Computerized Electrical Conductivity Method

1997-02-24
970938
Instruments and analytical techniques are described for in-vehicle monitoring of amounts of air (void fraction) in engine coolant systems and for evaluating the performance of degas reservoirs. This method, based on electrical conductivity measurements of flowing air / coolant mixture, provides measurement, acquisition and display of coolant system temperature, pressure, flow rate, instantaneous void fraction and rate of air removal by degas bottle. Embedded temperature compensation equations are used for essentially real time display of the void fraction.
X