Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Enhancing Mechanical Properties of Ductile Cast Iron Conrods through Different Heat Treatments

2016-10-25
2016-36-0360
The Austempering heat treatment is a well-known solution to improve the mechanical properties of ductile cast irons, therefore being referred as 'ADI' (Austempered Ductile Iron). The improved mechanical properties of ADI's with respect to conventional ductile iron is attributed to its resulting microstructure, which contains mainly carbide-free bainite with stabilized retained austenite. More recently, ductile cast irons were submitted to another heat treatment, known as 'Quenching and Partitioning' (Q&P). In this case, the ductile cast iron is austenitized, quenched to a temperature between Mf and Ms temperatures and subsequently heated to a temperature above Ms in order to partition the carbon from the martensite to the remaining austenite. The resulting microstructure comprises mainly low carbon martensite, austenite (stabilized by the carbon partition) and carbide-free bainite. Such microstructure resulted in equal or better properties than ADI.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

An Approach of the Engine Cylinder Block Material

2013-10-07
2013-36-0113
The increasing demand for energy savings in cars of high production volume, especially those classified as emerging market vehicles, has led the automotive industry to focus on several strategies to achieve higher efficiency levels from their systems and components. One of the most diffuse initiatives is reducing weight through the application of the so-called light alloys. An engine cylinder block can contribute nearly two percent of the vehicle's total mass. Special attention and soon repercussion are given when someone decides to apply a light alloy such as the aluminum to this component. Nonetheless, it is known that peculiarities in terms of physical, chemical and mechanical properties, due to the material nature, associated with regional market characteristics make the initial feasibility analysis study definitely one of the most important stages for the material choice decision.
Technical Paper

A Study on the Camshaft Lobe Microstructure Obtained by Different Processing

2012-10-02
2012-36-0499
The present work aims to characterize the microstructure of valvetrain camshaft lobes that are currently applied in the automotive industry, obtained by different processing routes. The cam lobe microstructure has been assessed by microscopy, whereas the mechanical properties by hardness profile measurements on the surface region. Microconstituents type and form, composing the final microstructure at the cam lobe work region, are defined by the casting route and/or post-heat treatment process other than alloy chemical composition, so that knowledge and control of processing route is vital to assure suitable valvetrain system assembly performance and durability. Most of the mechanical solicitations on the part occur at the interface between cam and follower; the actual contact area is significantly smaller than the apparent area. As a result, the microstructure at and near the surface performs a direct role on the performance of the valvetrain, cam lobe and its counterpart.
X