Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Lightweight Acoustic System Performance Target Setting Process

2013-05-13
2013-01-1982
In the vehicle development process, one important step is to set a component performance target from the vehicle level performance. Conventional barrier-decoupler dash mats and floor trim underlayment systems typically provide sound transmission loss (STL) with minimal absorption. Thus the performance of such components can be relatively easily specified as either STL or Insertion Loss. Lightweight dissipative or multi-layered acoustic materials provide both STL and significant absorption. The net performance is a combination of two parameters instead of one. The target for such components needs to account for this combined effect, however different suppliers use unique formulations and manufacturing methods, so it is difficult and time consuming to judge one formulation against another. In this paper, a unique process is presented to set a component target as a combined effect of STL and absorption.
Journal Article

Fluid Dynamic and Acoustic Optimization Methodology of a Motorbike Intake Airbox Using Multilevel Numerical CFD Models and Experimental Validation Tests

2013-09-08
2013-24-0070
In this work a multilevel CFD analysis have been applied for the design of an intake air-box with improved characteristics of noise reduction and fluid dynamic response. The approaches developed and applied for the optimization process range from the 1D to fully 3D CFD simulation, exploring hybrid approaches based on the integration of a 1D model with quasi-3D and 3D tools. In particular, the quasi-3D strategy is exploited to investigate several configurations, tailoring the best trade-off between noise abatement at frequencies below 1000 Hz and optimization of engine performances. Once the best configuration has been defined, the 1D-3D approach has been adopted to confirm the prediction carried out by means of the simplified approach, studying also the impact of the new configuration on the engine performances.
Journal Article

CFD Investigation of the Effect of Fluid-Structure Interaction on the Transmission Loss of ICE Silencers

2016-06-15
2016-01-1815
In the last decades numerical simulations have become reliable tools for the design and the optimization of silencers for internal combustion engines. Different approaches, ranging from simple 1D models to detailed 3D models, are nowadays commonly applied in the engine development process, with the aim to predict the acoustic behavior of intake and exhaust systems. However, the acoustic analysis is usually performed under the hypothesis of infinite stiffness of the silencer walls. This assumption, which can be regarded as reasonable for most of the applications, can lose validity if low wall thickness are considered. This consideration is even more significant if the recent trends in the automotive industry are taken into account: in fact, the increasing attention to the weight of the vehicle has lead to a general reduction of the thickness of the metal sheets, due also to the adoption of high-strength steels, making the vibration of the components a non negligible issue.
Journal Article

Improving the Simulation of the Acoustic Performance of Complex Silencers for ICE by a Multi-Dimensional Non-Linear Approach

2012-04-16
2012-01-0828
In this paper a three-dimensional time-domain CFD approach has been employed to predict and analyze the acoustic attenuation performance of complex perforated muffler geometries, where strong 3D effects limit the validity of the use of one-dimensional models. A pressure pulse has been imposed at the inlet to excite the wave motion, while unsteady flow computation have been performed to acquire the time histories of the pressures upstream and downstream of the silencer. Pressures in the time domain have been then transformed to acoustic pressures in the frequency domain, to predict the transmission loss.
Technical Paper

Dynamic Substructuring for Sources Contributions Analysis in Internal Combustion Engines

2016-06-15
2016-01-1761
For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
Technical Paper

Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems

2011-05-17
2011-01-1526
The acoustic simulation of internal combustion engine exhaust systems is an important aspect to meet customer expectations and legislation targets. One dimensional gas dynamic simulation tools are used for the calculation of the exhaust orifice noise in the early stages of the engine development process. This includes the prediction of the acoustic performance of individual components in the exhaust line. One common element used in exhaust systems to increase the acoustic damping is the plug flow muffler. This study looks at the prediction of acoustic performance of various plug mufflers at different flow velocities. These include a single plug muffler, a double plug muffler and an eccentric plug muffler with different porosities for the perforated sections. To this purpose a generic 3D cell approach was developed and applied.
Technical Paper

Performance Equivalent Thickness of a Sound Insulation System

2013-05-13
2013-01-1981
Vehicle sound insulation systems, such as front of dash mats or carpet assemblies, etc. play a key role in controlling vehicle interior noise. However, dash and carpet insulators are often designed to have varied thickness in compliance with packaging constraints or to fulfill manufacturing clearance requirements. While it is obvious to NVH engineers that thinned-down areas would significantly affect the insulation performance, design engineers would benefit from a quick tool to flag any design details that may negatively impact the performance. This paper therefore proposes a concept called the performance equivalent thickness for the sound insulation system. The aim is to link acoustic performance of an insulator layer to a geometric measure so that the component performance can be easily monitored and preserved at the design stage.
Technical Paper

Prediction of the Attenuation Characteristics of I.C. Engine Silencers by 1-D and Multi-D Simulation Models

2006-04-03
2006-01-1541
This paper describes the development, application and comparison of two different non-linear numerical codes, respectively based on a 1D and 3D schematization of the geometrical domain, for the prediction of the acoustic behavior of common silencing devices for i.c. engine pulse noise abatement. A white noise approach has been adopted and applied to predict the attenuation curves of silencers in the frequency domain, while a non-reflecting boundary condition was used to represent an anechoic termination. Expansion chambers, Helmholtz and column resonators, Herschel-Quincke tubes have been simulated by both the 1D and the 3D codes and the results compared to the available linear acoustic analytical solutions. Finally, a hybrid approach, in which the CFD code has been integrated with the 1D model, is described and applied to the simulation of a single cylinder engine. The computed results are compared to the measured pressure waves and emitted sound pressure level spectra.
Technical Paper

Investigation of Interior Noise from Generic Side- View Mirror Using Incompressible and Compressible Solvers of DES and LES

2018-04-03
2018-01-0735
Exterior turbulent flow is an important source of automobile cabin interior noise. The turbulent flow impacts the windows of the cabins to excite the structural vibration that emits the interior noise. Meanwhile, the exterior noise generated from the turbulent flow can also cause the window vibration and generate the interior noise. Side-view mirrors mounted upstream of the windows are one of the predominant body parts inducing the turbulent flow. In this paper, we investigate the interior noise caused by a generic side-view mirror. The interior noise propagates in a cuboid cavity with a rectangular glass window. The exterior flow and the exterior noise are computed using advanced CFD methods: compressible large eddy simulation, compressible detached eddy simulation (DES), incompressible DES, and incompressible DES coupled with an acoustic wave model. The last method is used to simulate the hydrodynamic and acoustic pressure separately.
Technical Paper

Variation of Vehicle NVH Properties due to Component Eigenfrequency Shifting - Basic Limits of Predictability

1995-05-01
951302
Many papers have been published on variation in noise and vibration as well as transfer function characteristics between individual vehicles with nominally identical design [1], [2] and [3]. However, prediction of Noise Vibration and Harshness (NVH) properties is mostly based on detailed, deterministic modelling with FE- and BE-methods. Time and computer resources for creation and experimental updating of these models need to be optimised with respect to achievable prediction accuracy, and in this context statistical, energy flow based methods (SEA, EFA etc.) should be considered as an efficient alternative for medium and high frequency NVH prediction. A basic study of variability for transfer function of multimodal systems, using ideal acoustic and structural components with parameters corresponding to vehicle body plates and cavities is performed. Well known theory on variability, originally developed for room acoustics, is demonstrated to apply also for simple plates.
Technical Paper

Acoustic Performance Evaluation of Hood Liner Constructions

2015-06-15
2015-01-2206
In automotive noise control, the hood liner is an important acoustic part for mitigating engine noise. The random incidence absorption coefficient is used to quantify the component level acoustic performance. Generally, air gaps, type of substrate materials, density of the substrate materials and Air Flow Resistivity (AFR) of the cover scrim are the dominant control factors in the sound absorption performance. This paper describes a systematic experimental investigation of how these control factors affect flat sample performance. The first stage of this study is full factorial measurement based on current available solutions from sound absorber suppliers. The acoustic absorption of different hood liner constructions, with variations in materials, density, air gaps, and scrims was measured.
Technical Paper

Enhanced Acoustic Performance using Key Design Parameters of Headliners

2015-06-15
2015-01-2339
Sound absorption materials can be key elements for mass-efficient vehicle noise control. They are utilized at multiple locations in the interior and one of the most important areas is the roof. At this location, the acoustic treatment typically comprises a headliner and an air gap up to the body sheet metal. The acoustic performance requirement for such a vehicle subsystem is normally a sound absorption curve. Based on headliner geometry and construction, the sound absorption curve shape can be adjusted to increase absorption in certain frequency ranges. In this paper an overall acoustic metric is developed to relate design parameters to an absorption curve shape which results in improved in-vehicle performance. This metric is based on sound absorption coefficient and articulation index. Johnson-Champoux-Allard equivalent fluid model and diffuse field equations are used. The results are validated using impedance tube measurements.
Technical Paper

Mitigation of Community Noise from a Vacuum Excavator Using Simulations

2019-06-05
2019-01-1480
Off-highway equipment operates in residential communities and must meet their radiated noise targets to be compliant with noise regulations and to be competitive in the marketplace. Traditional find and fix noise testing of late-stage prototype designs may cause launch delays, with intense time pressures that often result in missed opportunities to create excellent products with good value. Accurate simulation of noise from these machines allows noise targets to be assessed at each stage of product development, giving engineers time to develop low noise products without adding excessive manufacturing cost. Simulation of an early prototype of a new vacuum excavator showed excessive levels of radiated noise in two different frequency ranges. Further investigation of the simulation results of these two spectrum ranges indicated different noise mechanisms producing the excessive noise levels.
Technical Paper

Headliner Absorption Parameter Prediction and Modeling

2015-06-15
2015-01-2303
The headliner system in a vehicle is an important element in vehicle noise control. In order to predict the performance of the headliner, it is necessary to develop an understanding of the substrate performance, the effect of air gaps, and the contribution from any acoustic pads in the system. Current Statistical Energy Analysis (SEA) models for predicting absorption performance of acoustic absorbers are based on material Biot properties. However, the resources for material Biot property testing are limited and cost is high. In this paper, modeling parameters for the headliner substrate are identified from a set of standard absorption measurements on substrates, using curve fitting and optimization techniques. The parameters are then used together with thickness/design information in a SEA model to predict the vehicle headliner system absorption performance.
X