Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of a Multi-Dimensional Parallel Solver for Full-Scale DPF Modeling in OpenFOAM®

2009-06-15
2009-01-1965
A new fast and efficient parallel numerical solver for reacting and compressible flows through porous media has been developed in the OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox. With respect to the macroscopic model for porous media originally available in OpenFOAM®, a different mathematical approach has been followed: the new implemented solver makes use of the physical normal components resulting from the velocity expansion in the unit orthogonal vector basis to compute the Darcy pressure drop across the porous medium. Also, an additional sink term to account for the increased flow friction over the porous wall has been included into the momentum equation. In the new solver, the pressure correction equation is still able to achieve a faster convergency at very low permeability of the medium, also when it is associated with grid non-orthogonality.
Technical Paper

Kinetic Modelling Study of Octane Number and Sensitivity of Hydrocarbon Mixtures in CFR Engines

2005-09-11
2005-24-077
Aim of this work is to present and discuss the possibility and the limits of two zone models for spark-ignition engines using a detailed kinetic scheme for the characterization of the evolution of the air-fuel mixture, while an equilibrium approach is used for the burnt zone. Simple experimental measurements of knocking tendency of different fuels in ideal reactors, such as rapid compression machines and shock tube reactors, cannot be directly used for the analysis of octane numbers and sensitivity of hydrocarbon mixtures. Thus a careful investigation is very useful, not only of the combustion chamber behavior, including the modelling of the turbulent flame front propagation, but also of the fluid dynamic behavior of the intake and exhaust system, accounting for the volumetric efficiency of the engine.
Technical Paper

Prediction of the Attenuation Characteristics of I.C. Engine Silencers by 1-D and Multi-D Simulation Models

2006-04-03
2006-01-1541
This paper describes the development, application and comparison of two different non-linear numerical codes, respectively based on a 1D and 3D schematization of the geometrical domain, for the prediction of the acoustic behavior of common silencing devices for i.c. engine pulse noise abatement. A white noise approach has been adopted and applied to predict the attenuation curves of silencers in the frequency domain, while a non-reflecting boundary condition was used to represent an anechoic termination. Expansion chambers, Helmholtz and column resonators, Herschel-Quincke tubes have been simulated by both the 1D and the 3D codes and the results compared to the available linear acoustic analytical solutions. Finally, a hybrid approach, in which the CFD code has been integrated with the 1D model, is described and applied to the simulation of a single cylinder engine. The computed results are compared to the measured pressure waves and emitted sound pressure level spectra.
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

2009-04-20
2009-01-0305
Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
X