Refine Your Search

Topic

Search Results

Journal Article

A Method for Vibration and Harshness Analysis Based on Indoor Testing of Automotive Suspension Systems

2010-04-12
2010-01-0639
The paper presents a method for the indoor testing of road vehicle suspension systems. A suspension is positioned on a rotating drum which is located in the Laboratory for the Safety of Transport at Politecnico di Milano. Special six-axis load cells have been designed and used for measuring the forces/moments acting at each suspension-chassis joints. The forces/moments, wheel accelerations, displacements are measured up to 100 Hz. Two different types of test can be performed. The tire/wheel unbalance effect on the suspension system behavior (Vibration and Harshness, VH) has been analyzed by testing the suspension system from zero to the vehicle maximum speed on a flat surface and by monitoring the forces transmitted to the chassis. In the second kind of test, the suspension system has been excited as the wheel passes over different cleats fixed on the drum.
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Journal Article

Lightweight Acoustic System Performance Target Setting Process

2013-05-13
2013-01-1982
In the vehicle development process, one important step is to set a component performance target from the vehicle level performance. Conventional barrier-decoupler dash mats and floor trim underlayment systems typically provide sound transmission loss (STL) with minimal absorption. Thus the performance of such components can be relatively easily specified as either STL or Insertion Loss. Lightweight dissipative or multi-layered acoustic materials provide both STL and significant absorption. The net performance is a combination of two parameters instead of one. The target for such components needs to account for this combined effect, however different suppliers use unique formulations and manufacturing methods, so it is difficult and time consuming to judge one formulation against another. In this paper, a unique process is presented to set a component target as a combined effect of STL and absorption.
Journal Article

Fluid Dynamic and Acoustic Optimization Methodology of a Motorbike Intake Airbox Using Multilevel Numerical CFD Models and Experimental Validation Tests

2013-09-08
2013-24-0070
In this work a multilevel CFD analysis have been applied for the design of an intake air-box with improved characteristics of noise reduction and fluid dynamic response. The approaches developed and applied for the optimization process range from the 1D to fully 3D CFD simulation, exploring hybrid approaches based on the integration of a 1D model with quasi-3D and 3D tools. In particular, the quasi-3D strategy is exploited to investigate several configurations, tailoring the best trade-off between noise abatement at frequencies below 1000 Hz and optimization of engine performances. Once the best configuration has been defined, the 1D-3D approach has been adopted to confirm the prediction carried out by means of the simplified approach, studying also the impact of the new configuration on the engine performances.
Journal Article

Transmission Dynamic Modeling and Parametric NVH Analysis

2015-04-14
2015-01-1147
A new approach for modeling and analysis of a transmission and driveline system is proposed. By considering the stiffness, damping and inertias, model equations based on lumped parameters can be created through standard Lagrangian Mechanics techniques. A sensitivity analysis method has then been proposed on the eigenspace of the system characteristic equation to reveal the dynamic nature of a transmission and driveline system. The relative sensitivity calculated can clearly show the vibration modes of the system and the key contributing components. The usefulness of the method is demonstrated through the GM 6-speed RWD transmission by analyzing the dynamic nature of the driveline system. The results can provide a fundamental explanation of the vibration issue experienced and the solution adopted for the transmission.
Journal Article

CFD Investigation of the Effect of Fluid-Structure Interaction on the Transmission Loss of ICE Silencers

2016-06-15
2016-01-1815
In the last decades numerical simulations have become reliable tools for the design and the optimization of silencers for internal combustion engines. Different approaches, ranging from simple 1D models to detailed 3D models, are nowadays commonly applied in the engine development process, with the aim to predict the acoustic behavior of intake and exhaust systems. However, the acoustic analysis is usually performed under the hypothesis of infinite stiffness of the silencer walls. This assumption, which can be regarded as reasonable for most of the applications, can lose validity if low wall thickness are considered. This consideration is even more significant if the recent trends in the automotive industry are taken into account: in fact, the increasing attention to the weight of the vehicle has lead to a general reduction of the thickness of the metal sheets, due also to the adoption of high-strength steels, making the vibration of the components a non negligible issue.
Technical Paper

CFD Modeling of Gas-Fuel Interaction and Mixture Formation in a Gasoline Direct-Injection Engine Coupled With the ECN Spray G Injector

2020-04-14
2020-01-0327
The thorough understanding of the effects due to the fuel direct injection process in modern gasoline direct injection engines has become a mandatory task to meet the most demanding regulations in terms of pollutant emissions. Within this context, computational fluid dynamics proves to be a powerful tool to investigate how the in-cylinder spray evolution influences the mixture distribution, the soot formation and the wall impingement. In this work, the authors proposed a comprehensive methodology to simulate the air-fuel mixture formation into a gasoline direct injection engine under multiple operating conditions. At first, a suitable set of spray sub-models, implemented into an open-source code, was tested on the Engine Combustion Network Spray G injector operating into a static vessel chamber. Such configuration was chosen as it represents a typical gasoline multi-hole injector, extensively used in modern gasoline direct injection engines.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

2009-04-20
2009-01-0305
Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.
Journal Article

Theoretical/Experimental Study on the Vibrations of a Car Engine

2008-04-14
2008-01-1211
The influence of the inertia properties (mass, centre of gravity location, and inertia tensor) on the dynamic behaviour of the engine-gearbox system of a car is studied in this paper, devoting particular attention to drivability and comfort. The vibration amplitudes and the natural frequencies of the engine-gearbox system have been considered. Additionally, the loads transmitted to the car body have been taken into account. Both the experimental and the theoretical simulations confirmed that the engine-gearbox vibrations in the range 10 - 15 Hz are particularly sensitive to slight variation of the inertia properties. The effects on engine-gearbox vibrations due to half-axles, exhaust system, pipes and inner engine-gearbox fluids have been highlighted.
Journal Article

Improving the Simulation of the Acoustic Performance of Complex Silencers for ICE by a Multi-Dimensional Non-Linear Approach

2012-04-16
2012-01-0828
In this paper a three-dimensional time-domain CFD approach has been employed to predict and analyze the acoustic attenuation performance of complex perforated muffler geometries, where strong 3D effects limit the validity of the use of one-dimensional models. A pressure pulse has been imposed at the inlet to excite the wave motion, while unsteady flow computation have been performed to acquire the time histories of the pressures upstream and downstream of the silencer. Pressures in the time domain have been then transformed to acoustic pressures in the frequency domain, to predict the transmission loss.
Journal Article

Indoor/Outdoor Testing of a Passenger Car Suspension for Vibration and Harshness Analysis

2012-04-16
2012-01-0765
This paper presents a validation method for indoor testing of a passenger car suspension. A study was done to design a supporting modular structure with comparable inertances with respect to a vehicle's actual suspension and body connection points. For the indoor test, the rear axle is positioned on a rotating drum. The suspension system is excited as the wheel passes over cleats fixed on the drum and transient wheel motions are recorded. The indoor test rig outputs (i.e., wheel and chassis accelerations) were compared with experimental data measured on an actual vehicle running at different speeds on the same set of cleats along a flat road. The comparison results validate the indoor testing method. The forces and moments acting at each suspension and chassis connection point were measured with a set of patented six-axis load cells. The forces, moments, wheel and subframe accelerations were measured up to 120 Hz.
Technical Paper

Real-Time Estimation of Wheel Imbalances for Chassis Prognosis

2010-04-12
2010-01-0245
“Wheel balancing” is one of the common automotive repairs that the owners of an automobile usually experience. An unbalanced set of a tire and a rim or wheel on which the tire is mounted could cause vibration while driving. Such vibrations may be sensed by the driver at the steering wheel (known as smooth road shake). If left untreated for a long period of time, the vibration, induced by the imbalance, may propagate to chassis components such as bearing and bushing. This in turn causes excessive wear that eventually leads to a premature failure. Therefore, an early detection of wheel imbalances can not only significantly reduce the cost and time for diagnosis and repair of the wheel, but also prevent further damage to chassis components. This paper studies the feasibility of real-time detection of wheel imbalances in real world driving conditions, using recursive least square estimation method. The simulation study shows promising results for implementation in a real vehicle.
Technical Paper

Effect of the air density on the evolution and mixing properties of a GDI swirled spray

2001-09-23
2001-24-0048
A swirl injector for GDI application was used to inject an iso-octane spray in a quiescent chamber, to study the effect of the air density on the spray behavior. Stroboscopic images are recorded at different delays from the injection trigger to study the spray shape and structure. The temporal evolution of different spray parameters, length, width, angle, volume, instantaneous global air-fuel ratio, is calculated from the images. The effect of the increasing air density is to shorten the time and length scale of the spray evolution.
Technical Paper

Electric Traction Motors for Cadillac CT6 Plugin Hybrid-Electric Vehicle

2016-04-05
2016-01-1220
The Cadillac CT6 plug-in hybrid electric vehicle (PHEV) power-split transmission architecture utilizes two motors. One is an induction motor type while the other is a permanent magnet AC (PMAC) motor type referred to as motor A and motor B respectively. Bar-wound stator construction is utilized for both motors. Induction motor-A winding is connected in delta and PMAC motor-B winding is connected in wye. Overall, the choice of induction for motor A and permanent magnet for motor B is well supported by the choice of hybrid system architecture and the relative usage profiles of the machines. This selection criteria along with the design optimization of electric motors, their electrical and thermal performances, as well as the noise, vibration, and harshness (NVH) performance are discussed in detail. It is absolutely crucial that high performance electric machines are coupled with high performance control algorithms to enable maximum system efficiency and performance.
Technical Paper

Dynamic Substructuring for Sources Contributions Analysis in Internal Combustion Engines

2016-06-15
2016-01-1761
For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
Technical Paper

Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems

2011-05-17
2011-01-1526
The acoustic simulation of internal combustion engine exhaust systems is an important aspect to meet customer expectations and legislation targets. One dimensional gas dynamic simulation tools are used for the calculation of the exhaust orifice noise in the early stages of the engine development process. This includes the prediction of the acoustic performance of individual components in the exhaust line. One common element used in exhaust systems to increase the acoustic damping is the plug flow muffler. This study looks at the prediction of acoustic performance of various plug mufflers at different flow velocities. These include a single plug muffler, a double plug muffler and an eccentric plug muffler with different porosities for the perforated sections. To this purpose a generic 3D cell approach was developed and applied.
Technical Paper

Integrated CAE Methods for Perceived Quality Assurance of Vehicle Outer Panels

2014-04-01
2014-01-0366
Oil canning and initial stiffness of the automotive roofs and panels are considered to be sensitive customer ‘perceived quality’ issues. In an effort to develop more accurate objective requirements, respective simulation methods are continuously being developed throughout automotive industries. This paper discusses a latest development on oil canning predictions using LS-DYNA® Implicit, including BNDOUT request, MORTAR contact option and with the stamping process involved, which resulted in excellent correlations especially when it comes to measurements at immediate locations to the feature lines of the vehicle outer panels. Furthermore, in pursuit of light-weighting vehicles with thinner roofs, a new CAE method was recently developed to simulate severe noise conditions exhibited on some of developmental properties while going through a car wash.
Technical Paper

Performance Equivalent Thickness of a Sound Insulation System

2013-05-13
2013-01-1981
Vehicle sound insulation systems, such as front of dash mats or carpet assemblies, etc. play a key role in controlling vehicle interior noise. However, dash and carpet insulators are often designed to have varied thickness in compliance with packaging constraints or to fulfill manufacturing clearance requirements. While it is obvious to NVH engineers that thinned-down areas would significantly affect the insulation performance, design engineers would benefit from a quick tool to flag any design details that may negatively impact the performance. This paper therefore proposes a concept called the performance equivalent thickness for the sound insulation system. The aim is to link acoustic performance of an insulator layer to a geometric measure so that the component performance can be easily monitored and preserved at the design stage.
Technical Paper

Prediction of the Attenuation Characteristics of I.C. Engine Silencers by 1-D and Multi-D Simulation Models

2006-04-03
2006-01-1541
This paper describes the development, application and comparison of two different non-linear numerical codes, respectively based on a 1D and 3D schematization of the geometrical domain, for the prediction of the acoustic behavior of common silencing devices for i.c. engine pulse noise abatement. A white noise approach has been adopted and applied to predict the attenuation curves of silencers in the frequency domain, while a non-reflecting boundary condition was used to represent an anechoic termination. Expansion chambers, Helmholtz and column resonators, Herschel-Quincke tubes have been simulated by both the 1D and the 3D codes and the results compared to the available linear acoustic analytical solutions. Finally, a hybrid approach, in which the CFD code has been integrated with the 1D model, is described and applied to the simulation of a single cylinder engine. The computed results are compared to the measured pressure waves and emitted sound pressure level spectra.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
X