Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

2011-12-05
Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. Presenter Thomas Bardelang, Daimler AG
Video

Challenges in Automotive Electrification and Powertrain Component Development

2011-11-07
An overview of Daimler?s progression to advance powertrain technology in a growth industry shows many different solutions to improvement in transportation. Daimler continues to make breakthroughs in technology development and application building on 125 years of automotive development. Optimization of current powertrains will enable a significant gain in CO2/mi reductions, that dependent on product mix can be augmented with additional technologies. There is however no bypass to some form of electrification, enabling efficiency gains and alternative forms of power supply. Development of hybrid powertrains continues in an established manner and enhanced development of further electrified powertrains are in development. Organizationally and technically, significant skills and adjustments need to continue to be undertaken enabling OEMs and in particular the supply base to develop optimized solutions efficiently. The outlook is bright for novel component development and innovation.
Technical Paper

Toothed Couplings for Diesel Engines: An Example of Steel Substitution With Fiber Reinforced Plastics

1996-04-01
91A100
The replacement with plastic of an important component, formerly in steel, in the timing drive of a heavily duty diesel engine has been studied and realized. The substituted part is the toothed coupling connecting the injection pump to the timing drive. Torque that stresses the coupling has been measured with laboratory tests. The tooth stresses have been calculated with FEM analysis. Finally, fatigue tests have been carried out directly on the engine at different loadings. The test results are consistent with the predicted behavior of this component.
Technical Paper

Crash Performance of Rtm Composites for Automotive Applications

1996-04-01
91A120
This paper describes the experimental activity carried out at Aerospace Engineering Department of Politecnico di Milano about energy absorption capability of glass-epoxy RTM specimens, representative of automotive crash front structure sub-components. After the analysis of some automotive crashworthiness aspects, especially relevant to the structural adoption of composite materials, the specimen used and the technological route to produce them are described. Then experimental arrangements, test procedure and measurement technique, relevant to static and crash test are presented. Finally test results, reported in the form of numerical values, diagrams and high-velocity films are shown and critically commented.
Technical Paper

Virtual Transfer Path Analysis at Daimler Trucks

2009-05-19
2009-01-2243
As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
Technical Paper

Development of a Multi-Dimensional Parallel Solver for Full-Scale DPF Modeling in OpenFOAM®

2009-06-15
2009-01-1965
A new fast and efficient parallel numerical solver for reacting and compressible flows through porous media has been developed in the OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox. With respect to the macroscopic model for porous media originally available in OpenFOAM®, a different mathematical approach has been followed: the new implemented solver makes use of the physical normal components resulting from the velocity expansion in the unit orthogonal vector basis to compute the Darcy pressure drop across the porous medium. Also, an additional sink term to account for the increased flow friction over the porous wall has been included into the momentum equation. In the new solver, the pressure correction equation is still able to achieve a faster convergency at very low permeability of the medium, also when it is associated with grid non-orthogonality.
Technical Paper

Flow Maldistribution Effects on DPF Performance

2009-04-20
2009-01-1280
This paper focuses on some of the DPF system design issues where 3-dimensional modeling is necessary. The study is based on an existing 3-dimensional DPF model (axitrap) which is coupled to a commercial CFD code (Star-CD, CD-Adapco). The main focus is the effect of the inlet pipe geometry on soot distribution in the filter during loading and regeneration mode. The results show that due to the self-balancing effect, the resulting soot distribution in the filter under typical loading modes with low flow rates is quite uniform. With the assumption of adiabatic inlet pipe, the effect of non-symmetric inlet pipe is also negligible even during regeneration. However, under the realistic assumption of a non-adiabatic inlet pipe, the effect of inlet pipe geometry becomes very significant. Especially, for the case of a bent-shaped inlet pipe, the risk of impartial regeneration of the filter increases significantly.
Technical Paper

Using Simulation to Verify Diagnosis Algorithms of Electronic Systems

2009-04-20
2009-01-1043
In modern vehicles the architecture of electronics is growing more and more complex because both the number of electronic functions – e.g. implemented as software modules – as well as the level of networking between electronic control units (ECUs) is steadily increasing. This complexity leads to greater propagation of failure symptoms, and diagnosing the causes of failure becomes a new challenge. Diagnostics aims at detecting failures such as defect sensors or faulty communication messages. It is subdivided into diagnosis algorithms on an ECU and algorithms running offboard, e.g. on a diagnostic tester. These algorithms have to complement each other in the best possible way. While in the past the diagnosis algorithm was developed late in the development process, nowadays there are efforts to start the development of such algorithms earlier – at least in parallel to developing a new feature itself. This would allow developers to verify the diagnosis algorithms in early design stages.
Technical Paper

Utilizing Automated Report Generation and Data Acquisition Tools to Guide Fuel Cell Vehicle Fleet Operations

2008-04-14
2008-01-0462
Daimler is an industry leader in the development and deployment of fuel cell vehicles. With more than 100 fuel cell vehicles being driven worldwide at locations including the U.S., Singapore, Japan, Europe, China, and Australia, Daimler currently operates the world's largest fuel cell vehicle fleet. Each fuel cell vehicle is equipped with a powerful telematics system that records a diverse set of vehicle operation and fuel cell specific data for development purposes. Through innovative analysis methods Daimler is gaining unique insight into the technical, environmental, societal, and logistic influences impacting the future of fuel cell vehicle technology.
Journal Article

Fire Fighting of Li-Ion Traction Batteries

2013-04-08
2013-01-0213
The number of full electric and hybrid electric vehicles is rapidly growing [1][2][3]. The new technologies accompanying this trend are increasingly becoming a focal point of interest for rescue services. There is much uncertainty about the right techniques to free trapped occupants after an accident. The same applies to vehicle fires. Can car fires involving vehicles with a lithium ion traction battery be handled in the same way as conventional vehicle fires? Is water the right extinguishing agent? Is there a risk of explosion? There are many unanswered questions surrounding the topic of electric vehicle safety. The lack of information is a breeding ground for rumours, misinformation and superficial knowledge. Discussions on various internet platforms further this trend. Tests were conducted on three lithium ion traction batteries, which were fuel-fired until burning on their own. The batteries were then extinguished with water, a surfactant and a gelling agent.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Technical Paper

Reduced Kinetic Mechanisms for Diesel Spray Combustion Simulations

2013-09-08
2013-24-0014
Detailed chemistry represents a fundamental pre-requisite for a realistic simulation of combustion process in Diesel engines to properly reproduce ignition delay and flame structure (lift-off and soot precursors) in a wide range of operating conditions. In this work, the authors developed reduced mechanisms for n-dodecane starting from the comprehensive kinetic mechanism developed at Politecnico di Milano, well validated and tested in a wide range of operating conditions [1]. An algorithm combining Sensitivity and Flux Analysis was employed for the present skeletal reduction. The size of the mechanisms can be limited to less than 100 species and incorporates the most important details of low-temperature kinetics for a proper prediction of the ignition delay. Furthermore, the high-temperature chemistry is also properly described both in terms of reactivity and species formation, including unsaturated compounds such as acetylene, whose concentration controls soot formation.
Technical Paper

Comparison of Numerical and System Dynamics Methods for Modeling Wave Propagation in the Intake Manifold of a Single-Cylinder Engine

2013-09-08
2013-24-0139
The automotive industry is striving to adopt model-based engine design and optimization procedures to reduce development time and costs. In this scenario, first-principles gas dynamic models predicting the mass, energy and momentum transport in the engine air path system with high accuracy and low computation effort are extremely important today for performance prediction, optimization and cylinder charge estimation and control. This paper presents a comparative study of two different modeling approaches to predict the one-dimensional unsteady compressible flow in the engine air path system. The first approach is based on a quasi-3D finite volume method, which relies on a geometrical reconstruction of the calculation domain using networks of zero-dimensional elements. The second approach is based on a model-order reduction procedure that projects the nonlinear hyperbolic partial differential equations describing the 1D unsteady flow in engine manifolds onto a predefined basis.
Technical Paper

Stoichiometric Natural Gas Combustion in a Single Cylinder SI Engine and Impact of Charge Dilution by Means of EGR

2013-09-08
2013-24-0113
In this paper experimental results of a medium duty single cylinder research engine with spark ignition are presented. The engine was operated with stoichiometric natural gas combustion and additional charge dilution by means of external and cooled exhaust gas recirculation (EGR). The first part of this work considers the benefits of cooled EGR on thermo-mechanical stress of the engine including exhaust gas temperature, cylinder head temperature, and knock behaviour. This is followed by the analysis of the influence of cooled EGR on the heat release rate. In this context the impact of fuel gas composition is also under investigation. The influence of increasing EGR on fuel efficiency, which is caused by a changed combustion process due to higher fractions of inert gases, is shown in this section. By application of different pistons a relationship between the piston bowl geometry and the flame propagation has been demonstrated.
Technical Paper

Needle Roller Bearing Lubricant Flow CFD Simulations

2013-01-09
2013-26-0041
This work analyzes the lubricant supply to critical regions of needle roller bearing of an automatic transmission. The needle roller bearing is a critical component of an automatic transmission and it has several rotating cylindrical needle rollers that are having relative motion with inner surface of the pinion. Supply of lubricant to the needle roller bearings is very essential to prevent failure of the bearings due to frictional contact between rollers and inner surface of pinion. The supply of lubricant to the needle roller bearings depends on the location of oil supply hole. Lubricant supply to the needle roller bearings of an automatic transmission is studied using commercial 3D Computational Fluid Dynamics (CFD) software for different oil supply positions. CFD simulation is performed for the region between the pinion supply hole and end of the needle bearings including all needles. Lubricant is supplied to the needle bearing from the pinion pin oil supply hole.
Technical Paper

Influence of Fuel Composition and Combustion Process on Thermodynamic Parameters of SI Engines

2012-09-10
2012-01-1633
In the field of heavy-duty applications almost all engines apply the compression ignition principle, spark ignition is used only in the niche of CNG engines. The main reason for this is the high efficiency advantage of diesel engines over SI engines. Beside this drawback SI engines have some favorable properties like lower weight, simple exhaust gas aftertreatment in case of stoichiometric operation, high robustness, simple packaging and lower costs. The main objective of this fundamental research was to evaluate the limits of a SI engine for heavy-duty applications. Considering heavy-duty SI engines fuel consumption under full load conditions has a high impact on CO₂ emissions. Therefore, downsizing is not a promising approach to improve fuel consumption and consequently the focus of this work lies on the enhancement of thermal efficiency in the complete engine map, intensively considering knocking issues.
Technical Paper

Low-speed Boom Noise - Escalating Relevance According to CO2- Targets and High Torque Engines

2012-06-13
2012-01-1547
The increasing shift of drive operation towards efficient engine operation points at very low engine speeds demands a concerted design and tuning of engine, drive-train, assembly attachment and body to avoid annoying low speed boom noise. An additional challenge in this area of conflict is the increasing torque of modern engines at low engine speeds. As an example for a standard passenger car, the modes of operation, which may lead to low speed boom noise, are described. Setting levers along the complete chain of effect are characterised - from cylinder pressure up to the radiating surfaces of the interior. To achieve challenging NVH-targets the application of nonlinear simulation systems is indispensable, in particular in the concept phase of a vehicle. The use of multi-body simulation is presented for a concentrated NVH-optimisation of powertrain and rear axle vibration behaviour to reduce low-speed boom noise. On entire vehicle level hybrid simulation models are useful.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
Journal Article

Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction

2010-04-12
2010-01-1181
Ammonia/urea-SCR is a mature technology, applied worldwide for the control of NOx emissions in combustion exhausts from thermal power plants, cogeneration units, incinerators and stationary diesel engines and more recently also from mobile sources. However a greater DeNOx activity at low temperatures is desired in order to meet more and more restrictive legislations. In this paper we report transient and steady state data collected over commercial Fe-ZSM-5 and V₂O₅-WO₃/TiO₂ catalysts showing high NOx reduction efficiencies in the 200 - 350°C T-range when NO and ammonia react with nitrates, e.g., in the form of an aqueous solution of ammonium nitrate. Under such conditions a new reaction occurs, the so-called "Enhanced SCR" reaction, 2 NH₃ + 2 NO + NH₄NO₃ → 3 N₂ + 5 H₂O.
Technical Paper

Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems

2011-05-17
2011-01-1526
The acoustic simulation of internal combustion engine exhaust systems is an important aspect to meet customer expectations and legislation targets. One dimensional gas dynamic simulation tools are used for the calculation of the exhaust orifice noise in the early stages of the engine development process. This includes the prediction of the acoustic performance of individual components in the exhaust line. One common element used in exhaust systems to increase the acoustic damping is the plug flow muffler. This study looks at the prediction of acoustic performance of various plug mufflers at different flow velocities. These include a single plug muffler, a double plug muffler and an eccentric plug muffler with different porosities for the perforated sections. To this purpose a generic 3D cell approach was developed and applied.
X