Refine Your Search

Topic

Author

Search Results

Journal Article

Analysis of Reservoir Pressure Decay, Velocity and Concentrations Fields of Natural Gas Venting from Pressurized Reservoir into the Atmosphere

2011-04-12
2011-01-0252
Compressed natural gas (CNG) currently is used as an alternative fuel for internal combustion engines in motor vehicles. This paper presents results of an analysis of leaks from a model isolated section of CNG fuel system. Discharge of CNG was modeled as vent flow of a real gas hydrocarbon mixture through an orifice from a reservoir with finite volume. Pressures typically used in CNG fuel systems result in choked flow for gas venting directly to atmosphere, producing an under-expanded, momentum-dominated, turbulent free jet with well defined velocity and concentration fields. This paper presents results of analyses of reservoir pressure decay, and vent flow and concentrations fields for CNG venting from a pressurized reservoir into the atmosphere. A combination of empirically-derived analytical relationships and detailed two-dimensional high resolution computational fluid dynamic modeling was used to determine the velocity and concentrations fields of the resulting CNG jet.
Journal Article

High Temperature Brake Cooling - Characterization for Brake System Modeling in Race Track and High Energy Driving Conditions

2011-04-12
2011-01-0566
At elevated temperatures, such as those encountered under race track or fade test conditions, the closed-form solution to the lumped capacitance model for characterizing brake cooling (fitted to a standard cooling test temperature range) tends to break down and provide an inaccurate representation of brake rotor cooling behavior. Accurate prediction of cooling is fundamental to brake system component sizing and selection of materials at the early stages of a vehicle program; this is especially true of a high performance vehicle with track performance requirements. To this end, alternative approaches to characterizing brake cooling have been examined to determine their suitability for use in measurement and simulation of brake performance.
Journal Article

Modeling of Residual Stresses in Quenched Cast Aluminum Components

2011-04-12
2011-01-0539
Cast aluminum alloys are normally quenched after solution treatment or solidification process to improve aging responses. Rapid quenching can lead to high residual stress and severe distortion which significantly affects dimension stability, functionality and particularly performance of the product. To simulate residual stress and distortion induced during quenching, a finite element based approach was developed by coupling an iterative zone-based transient heat transfer algorithm with material thermo-viscoplastic constitutive model. With the integrated models, the numeric predictions of residual stresses and distortion in the quenched aluminum castings are in a good agreement with experimental measurements.
Journal Article

Understanding Driver Perceptions of a Vehicle to Vehicle (V2V) Communication System Using a Test Track Demonstration

2011-04-12
2011-01-0577
Vehicle-to-vehicle (V2V) communication systems can enable a number of wireless-based vehicle features that can improve traffic safety, driver convenience, and roadway efficiency and facilitate many types of in-vehicle services. These systems have an extended communication range that can provide drivers with information about the position and movements of nearby V2Vequipped vehicles. Using this technology, these vehicles are able to communicate roadway events that are beyond the driver's view and provide advisory information that will aid drivers in avoiding collisions or congestion ahead. Given a typical communication range of 300 meters, drivers can potentially receive information well in advance of their arrival to a particular location. The timing and nature of presenting V2V information to the driver will vary depending on the nature and criticality of the scenario.
Journal Article

FMVSS126 Electronic Stability Control Sine With Dwell Incomplete Vehicle Type 2 Analysis

2011-04-12
2011-01-0956
Incomplete vehicles are partially manufactured by an Original Equipment Manufacturer (OEM) and subsequently sold to and completed by a final-stage manufacturer. Section S8.8, Final-Stage Manufacturers and Alterers, of Federal Motor Vehicle Safety Standard (FMVSS) 126 states “Vehicle that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with Part 567 of this chapter, are not subject to the requirements of S8.1 through S8.5. Instead, all vehicles produced by these manufacturers on or after September 1, 2012, must comply with this standard.” The FMVSS 126 compliance of the completed vehicle can be certified in three ways: by the OEM provided no alterations are made to identified components (TYPE 1), conditionally by the OEM provided the final-stage manufacturer follows specific guidelines (TYPE 2), or by the final-stage manufacturer (TYPE 3).
Journal Article

Vehicle Handling Parameter Trends: 1980 - 2010

2011-04-12
2011-01-0969
Handling and tire performance continue to evolve due to significant improvements in vehicle, electronics, and tire technology over the years. This paper examines the trends in handling and tire performance metrics for production cars and trucks since the 1980's. This paper is based on a significant number of directional response and tire tests conducted during that period. It describes ranges of these parameters and shows how they have changed over the past thirty years.
Journal Article

Light Vehicle Dry Stopping Distance - Vehicle Speed Correction, Tire Burnish, and Surface Friction Correction

2011-04-12
2011-01-0966
Consistent and accurate vehicle stopping distance measurements have been difficult to achieve across the industry including media vehicle evaluations. Initial test speed, brake pedal force application, tire burnish, road surface friction, and Anti-lock Brake System (ABS) efficiency are five test variables influencing variation in stopping distance measurements. This paper will discuss these five test variables and how to apply consistent test methods to reduce test variation.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Journal Article

Iterative Learning Control for a Fully Flexible Valve Actuation in a Test Cell

2012-04-16
2012-01-0162
An iterative learning control (ILC) algorithm has been developed for a test cell electro-hydraulic, fully flexible valve actuation system to track valve lift profile under steady-state and transient operation. A dynamic model of the plant was obtained from experimental data to design and verify the ILC algorithm. The ILC is implemented in a prototype controller. The learned control input for two different lift profiles can be used for engine transient tests. Simulation and bench test are conducted to verify the effectiveness and robustness of this approach. The simple structure of the ILC in implementation and low cost in computation are other crucial factors to recommend the ILC. It does not totally depend on the system model during the design procedure. Therefore, it has relatively higher robustness to perturbation and modeling errors than other control methods for repetitive tasks.
Journal Article

Optimal Sensor Configuration and Fault-Tolerant Estimation of Vehicle States

2013-04-08
2013-01-0175
This paper discusses observability of the vehicle states using different sensor configurations as well as fault-tolerant estimation of these states. The optimality of the sensor configurations is assessed through different observability measures and by using a 3-DOF linear vehicle model that incorporates yaw, roll and lateral motions of the vehicle. The most optimal sensor configuration is adopted and an observer is designed to estimate the states of the vehicle handling dynamics. Robustness of the observer against sensor failure is investigated. A fault-tolerant adaptive estimation algorithm is developed to mitigate any possible faults arising from the sensor failures. Effectiveness of the proposed fault-tolerant estimation scheme is demonstrated through numerical analysis and CarSim simulation.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Technical Paper

Balance of Electrical Power Requirements through Smart Electric Power Management

2011-04-12
2011-01-0042
This paper examines Smart Electric Power Management as it pertains to when the vehicle charging system is active. Over the past decade there have been several factors at play which have stressed the demands placed upon the vehicle electrical power system. Many of these factors present challenges to electrical power that are at cross-purposes with one another. For example, demands of new and existing electrical loads, customer expectations about load performance and battery life, and the push by governments' world-wide for increased fuel economy (FE) and reduced CO2 emissions all have direct impact and can be directly impacted by decisions made in electric power design. As the electrification of the vehicle has progressed we now have much more specific vehicle state data available and the means to share this information among on-board computers through serial data link connectivity.
Technical Paper

Adaptive Remote Vehicle Start Operation for Reduced Fuel Consumption

2011-04-12
2011-01-0045
Remote vehicle start systems are commonly available as an aftermarket accessory, and more recently, as a factory installed vehicle feature. These systems and their associated algorithms enable a user of the vehicle to remotely start the engine and/or other vehicle systems with the end goal of preconditioning the cabin environment, for example, if the user wishes to have the vehicle's interior heated or cooled before the user enters the vehicle. However, if the engine is remotely started for an extended period of time, the increased use of fuel, energy, and/or other resources may be greater than optimal or desired. Through the use of available vehicle sensors and enhanced algorithms, a system can be implemented which allows the passenger cabin to be heated or cooled to within a range of moderate temperatures, while reducing the resources utilized by the vehicle.
Technical Paper

An Approach to the Safety Design and Development of a Brake-by-Wire Control System

2011-04-12
2011-01-0212
The increasing usage of brake-by-wire systems in the automotive industry has provided manufacturers with the opportunity to improve both vehicle and manufacturing efficiency. The replacement of traditional mechanical and hydraulic control systems with electronic control devices presents different potential vehicle-level safety hazards than those presented by conventional braking systems. The proper design, development, and integration of a brake-by-wire control system requires that hazards are reasonably prevented or mitigated in order to maximize the safety of the vehicle operator, occupant(s), and passers-by.
Technical Paper

Relative Torque Estimation on Transmission Output Shaft with Speed Sensors

2011-04-12
2011-01-0392
Automobile drivers/passengers perceive automatic transmission (AT) shift quality through the torque transferred by transmission output shaft, so that torque regulation is critical in transmission shift control and etc. However, since a physical torque sensor is expensive, current shift control in AT is usually achieved by tracking a turbine speed profile due to the lack of the transmission output torque information. A direct torque feedback has long been desired for transmission shift control enhancement. This paper addresses a “virtual” torque sensor (VTS) algorithm that can provide an accurate estimate on the torque variation in the vehicle transmission output shaft using (existing) speed sensors. We have developed the algorithm using both the transmission output speed sensor and anti-lock braking system speed sensors. Practical solutions are provided to enhance the accuracy of the algorithm. The algorithm has been successfully implemented on both FWD and RWD vehicles.
Technical Paper

Wrought Magnesium Components for Automotive Chassis Applications

2011-04-12
2011-01-0077
Automotive structural components are exposed to high loads, impact situations and corrosion. In addition, there may be temperature excursions that introduce creep as well as reduced modulus (stiffness). These issues have limited the use of light metals in automotive structural applications primarily to aluminum alloys, and primarily to cast wheels and knuckles (only a few of which are forged), cast brake calipers, and cast control arms. This paper reports on research performed at Chongqing University, Chongqing China, under the auspices of General Motors engineering and directed by the first author, to develop a protocol that uses wrought magnesium in control arms. The goal was to produce a chassis part that could provide the same engineering function as current cast aluminum applications; and since magnesium is 33% less dense than aluminum, would be lighter.
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Technical Paper

Application of the Homogeneous Relaxation Model to Simulating Cavitating Flow of a Diesel Fuel

2012-04-16
2012-01-1269
The internal flow in an injector is greatly affected by cavitation formation, and this in turn impacts the spray characteristics of diesel injectors. In the current work, the performance of the Homogeneous Relaxation Model (HRM) in simulating cavitation inside a diesel injector is evaluated. This model is based on the assumption of homogeneous flow, and was originally developed for flash boiling simulations. However, the model can potentially simulate the spectrum of vaporization mechanisms ranging from cavitation to flash boiling through the use of an empirical time scale which depends on the thermodynamic conditions of the injector fuel. A lower value of this time scale represents a lower deviation from thermal equilibrium conditions, which is an acceptable assumption for small-scale cavitating flows. Another important advantage is the ability of this model to be easily coupled with real fuel models.
X