Refine Your Search

Topic

Author

Search Results

Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Journal Article

Gossip Networks: The Enabler for Sparsely Populated VANETs

2011-04-12
2011-01-0046
The future deployment of safety-oriented Dedicated Short Range Communications (DSRC) technology may be hindered due to the so-called “Market Penetration” problem: as a wireless network built from scratch, there is lack of value to consumers who are early adopters. In this paper, we explore potential applications that can be supported during the initial phase of vehicular ad-hoc network (VANET) deployment, i.e., sparsely populated VANETs. We show that delay-insensitive information sharing applications are promising since they only require opportunistic network connections (in contrast to safety applications that require “always on” connectivity). This is done via “gossip spread” information distribution protocols by which DSRC vehicles cache and then exchange the information while in range of other DSRC vehicles or road side units. This approach is especially attractive since the number of communicating vehicles will be very small during early deployment years.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

Fatigue Behavior and Life Prediction for Aluminum Castings in the Absence of Casting Flaws

2011-04-12
2011-01-0193
Cast aluminum alloys are increasingly used in cyclically loaded automotive structural applications for light weight and fuel economy. The fatigue resistance of aluminum castings strongly depends upon the presence of casting flaws and characteristics of microstructural constituents. The existence of casting flaws significantly reduces fatigue crack initiation life. In the absence of casting flaws, however, crack initiation occurs at the fatigue-sensitive microstructural constituents. Cracking and debonding of large silicon (Si) and Fe-rich intermetallic particles and crystallographic shearing from persistent slip bands in the aluminum matrix play an important role in crack initiation. This paper presents fatigue life models for aluminum castings free of casting flaws, which complement the fatigue life models for aluminum castings containing casting flaws published in [1].
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Detailed Simulations of Stratified Ignition and Combustion Processes in a Spray-Guided Gasoline Engine using the SparkCIMM/G-Equation Modeling Framework

2012-04-16
2012-01-0132
Recently, high-speed optical imaging data for a single operating point of a spray-guided gasoline engine has, along with the flamelet model and the G-equation theory, enabled the development of the new spark-ignition model SparkCIMM. Within its framework, detailed chemistry flamelet models capture the experimental feature of multiple localized ignition events along the excessively stretched and restriking spark channel, as well as the observations of non-spherical highly corrugated early turbulent flame fronts. The developed flamelet models account for the substantial turbulent fluctuations in equivalence ratio and enthalpy present under spray-guided conditions. A non-unity Lewis number formulation captures the deficient species diffusion into the highly curved flame reaction zone.
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Journal Article

Hybrid Automata Modeling of SI Gasoline Engines towards State Estimation for Fault Diagnosis

2011-12-15
2011-01-2434
Mean Value Engine Models, commonly used for model based fault diagnosis of SI engines, fail to capture the within-cycle dynamics of engines, often resulting in reduced fault sensitivity. This paper presents a new Hybrid Automata based modeling approach for characterizing the within-cycle dynamics of the thermo-fluidic processes in a Spark Ignition Gasoline Engine, targeted for use in model based fault diagnosis. Further, using a hybrid version of the Extended Kalman Filter (EKF), the states from the nonlinear hybrid automata based dynamic model are estimated and their results validated w.r.t standard industrial simulation software, AMESim. It is observed that due to the switching of within cycle engine dynamics, causing mode change, there is a corresponding change in model's structure which in turn can cause change in system's observability.
Technical Paper

Balance of Electrical Power Requirements through Smart Electric Power Management

2011-04-12
2011-01-0042
This paper examines Smart Electric Power Management as it pertains to when the vehicle charging system is active. Over the past decade there have been several factors at play which have stressed the demands placed upon the vehicle electrical power system. Many of these factors present challenges to electrical power that are at cross-purposes with one another. For example, demands of new and existing electrical loads, customer expectations about load performance and battery life, and the push by governments' world-wide for increased fuel economy (FE) and reduced CO2 emissions all have direct impact and can be directly impacted by decisions made in electric power design. As the electrification of the vehicle has progressed we now have much more specific vehicle state data available and the means to share this information among on-board computers through serial data link connectivity.
Technical Paper

Development of 3-D Digital Proving Ground Profiles for Use in Virtual Prediction of Vehicle System/Sub-System Loads

2011-04-12
2011-01-0189
The usage of multi-body dynamics tools for the prediction of vehicle system/sub-system loads, has significantly reduced the need to measure vehicle loads at proving grounds. The success of these tools is limited by the quality of the digital representations being used to simulate the physical test roads. The development of these digital roads is not a trivial task due to the large quantity of data and processing required. In the end, the files must be manageable in size, have a globally common format, and be simulation-friendly. The authors present a methodology for the development of high quality 3-dimensional (3-D) digital proving ground profiles. These profiles will be used in conjunction with a multi-body dynamics software package (ADAMS) and the FTire™ model. The authors present a case study below.
Technical Paper

Experimental Study of NOx Reduction by Passive Ammonia-SCR for Stoichiometric SIDI Engines

2011-04-12
2011-01-0307
As vehicle fuel economy requirements continue to increase it is becoming more challenging and expensive to simultaneously improve fuel consumption and meet emissions regulations. The Passive Ammonia SCR System (PASS) is a novel aftertreatment concept which has the potential to address NOx emissions with application to both lean SI and stoichiometric SI engines. PASS relies on an underfloor (U/F) SCR for storage of ammonia which is generated by the close-coupled (CC) TWCs. For lean SI engines, it is required to operate with occasional rich pulses in order to generate the ammonia, while for stoichiometric application ammonia is passively generated through the toggling of air/fuel ratio. PASS serves as an efficient and cost-effective enhancement to standard aftertreatment systems. For this study, the PASS concept was demonstrated first using lab reactor results which highlight the oxygen tolerance and temperature requirements of the SCR.
Technical Paper

Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System

2011-04-12
2011-01-0306
Lean-burn SIDI engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. There are several aftertreatment technologies, including the lean NOx trap and active urea SCR, which have been widely considered, but they all suffer from high material cost and require customer intervention to fill the urea solution. Recently reported passive NH₃-SCR system - a simple, low-cost, and urea-free system - has the potential to enable the implementation of lean-burn gasoline engines. Key components in the passive NH₃-SCR aftertreatment system include a close-coupled TWC and underfloor SCR technology. NH₃ is formed on the TWC with short pulses of rich engine operation and the NH₃ is then stored on the underfloor SCR catalysts.
Technical Paper

The Influence of DISI Engine Operating Parameters on Particle Number Emissions

2011-04-12
2011-01-0143
The future EURO 6 emission standard will limit the particle number and mass for gasoline engines. The proposed limit for particle mass is 4.5 mg/km. For particle number there is not yet a limit defined but a wide range of proposals are under discussion (6E11 - 8E12 Particles/km) The particle emissions on a homogeneous SIDI engine are mainly caused by insufficient mixture preparation. A combustion improvement could be achieved by a careful recalibration as well as a hardware optimization that mainly avoids wall impingement and substoichiometric zones in the combustion chamber. The analyses of current SIDI vehicles show significant PN emission peaks during cold start and transient operation on a NEDC cycle. To give a better understanding of cause and effect of the particle formation at steady state results so as transient load steps were performed at an engine dynamometer.
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Technical Paper

Design, Analysis, and Development Testing of Large Hood Plastic Mounted Trim Components

2011-04-12
2011-01-0490
Large hood mounted plastic trim components are subjected to complex and often extreme loading conditions. Typical loading conditions include solar and thermal cycling, as well as road and powertrain induced vibrations, aero lift and buffeting, and mechanical loads such as car wash. For the above components understanding and classifying the typical loading conditions is an essential and important step in achieving long term quality. This paper discusses different approaches to the design, analysis, development, and testing of plastic trim components. Samples of analysis and test results are presented to demonstrate how to identify and prevent the loss of the part function. Some useful guidelines and practices for addressing thermal expansion, dimensional variation, and redundancy in attachments are also discussed.
Technical Paper

Particle Size and Number Emissions from Modern Light-Duty Diesel Vehicles

2011-04-12
2011-01-0632
This paper focuses on measuring particle emissions of a representative light-duty diesel vehicle equipped with different engine exhaust aftertreatment in close-coupled position, including one designed to meet the upcoming Euro 6 emission standards. The latter combines a lean NOx trap (LNT) and a diesel particulate filter (DPF) in series to simultaneously reduce NOx and PM. Particle Matter (PM) and particle number emissions are measured throughout testing procedure and instrumentation which are compliant with the UN-ECE Regulation 83 proposals. Specifically measuring devices for particle number emissions, provided by two different suppliers, are alternatively used. No significant differences are observed due to the different system employed. On the other hand particle size distributions are measured by means of a specific experimental set-up including a two stage dilution system and an electrical low pressure impactor (ELPI).
Technical Paper

Safety and Performance Benefits Associated with the Use of a Spotter Mirror: Impact on Driver Lane-Change Planning and Execution

2011-04-12
2011-01-0595
Research was conducted to assess driver acceptance and performance associated with a spotter mirror feature intended to reduce the incidence of lane-change conflicts by enhancing drivers' ability to detect vehicles in their side blind zone. The spotter mirror consisted of an integrated spherical convex blind zone mirror inset within a larger planar mirror. The spotter mirror's field-of-view was designed to target the vehicle's side blind zone area and to help drivers quickly detect the presence or absence of a vehicle in the blind zone. The study captured normative lane-change behavior during an extended drive on public roadways, with and without access to the spotter mirror system, for a sample of familiar and unfamiliar supplemental mirror users. In order to capture more naturalistic lane-change behavior, drivers were informed that the purpose of the study was to evaluate the adequacy of existing road signs for navigating to a destination.
Technical Paper

Small Amplitude Torsional Steering Column Dynamics on Smooth Roads: In-Vehicle Effects and Internal Sources

2011-04-12
2011-01-0560
Internally excited torsional steering wheel vibrations at frequencies near 8-22 Hz on smooth roads can produce driver disturbances, commonly described as “SHAKE”. These vibrations are primarily excited by the rotating front suspension corners and are periodic in the rotational frequencies of the tire-wheel assemblies. The combination of vehicular dynamic amplification originating in dominant suspension and steering system vibratory modes, and a sufficiently large 1st harmonic non-uniformity excitation of the rotating corner components, can result in periodic vibrations exceeding thresholds of disturbance. Controlling the periodic non-uniformity excitation through individual component requirements (e.g., wheel imbalance, tire force variation, wheel runout, concentric piloting of wheel on hub) is difficult since the desired upper limits of individual component requirements for vibration-free performance are typically beyond industry capability.
X