Refine Your Search

Topic

Author

Search Results

Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Journal Article

The Front Center Airbag

2013-04-08
2013-01-1156
General Motors and the Takata Corporation have worked together to bring to production a new, industry first technology called the Front Center Airbag which is being implemented on General Motors' 2013 Midsize Crossover Vehicles. This paper reviews field data, describes the hardware, and presents occupant test data to demonstrate in-position performance in far side impacts. The Front Center Airbag is an airbag that mounts to the inboard side of the driver front seat. It has a tubular cushion structure, and it deploys between the front seating positions in far side impacts, near side impacts and rollovers, with the cushion positioning itself adjacent the driver occupant's head and torso. This paper includes pictures of the technology along with a basic description of the design. In-position occupant performance is also described and illustrated with several examples. Single occupant and two front occupant far side impact test data are included, both with and without the airbag present.
Technical Paper

Knock Detection and Estimation Based on Heat Release Strategies

2011-04-12
2011-01-1409
Engine knock has been studied extensively over the years. Its undesired effects on drivability, its potential to damage an engine, and its impact on limiting the compression ratio are the main reasons why it remains a current topic of research. This paper focuses on exploiting the connection between auto-ignition and knock. A new method based on the frequency analysis of the heat release traces is proposed to detect and estimate auto-ignition/knock robustly. Filtering the heat release signal with the appropriate bandwidth is crucial to avoid misdetection. The filter settings used in this paper are found using spectral analysis of the heat release signal. By using the proposed method, it is possible to detect auto-ignition/knock even under the presence of undesired sensor resonance effects and noise from mechanical and electrical sources.
Journal Article

Design Optimization of Front Bumper System for Low Speed Impact Insurance Industry Impact Test using DFSS and CAE Analysis

2011-04-12
2011-01-0070
In 2006, the Insurance Institute for Highway Safety (IIHS) released a new Low Speed Bumper Test Protocol for passenger cars1. The new test protocol included the development of a deformable barrier that the vehicle would impact at low speeds. IIHS positioned the new barrier to improve correlation to low speed collisions in the field, and also to assess the ability of the bumper system to protect the vehicle from damage. The bumper system must stay engaged to the barrier to protect other vehicle components from damage. The challenge is to identify the bumper system design features that minimize additional cost and mass to keep engagement to the barrier. The results of the Design for Six Sigma analysis identified the design features that increase the stiffness of the bumper system enable it to stay engaged to the barrier and reduce the deflection.
Technical Paper

Development of Sensor Attachment Criteria (Immunity) - Side Impact Sensor Mounted on Door Impact Beam

2011-04-12
2011-01-1445
The sensor mounted on the door impact beam plays a major role in side impact events. The accelerations of side impact sensors are processed by sensing algorithms to make a decision on the air bag deployment. The sensing signal criterion for the deployable condition is a well understood process. However, the non-deployment sensing signal for the immunity to abuse conditions is a function of sensor attachment stiffness to the base structure. The base structure can be a door inner panel or door impact beam. In one of the production program, the acceleration based sensor attached to the impact beam showed immunity issues in the abusive door slams/opening to objects. Hence, the computer Aided Engineering (CAE) analysis was used to develop the sensor attachment criterion.
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Technical Paper

Driver Visibility: Customer Insights and Metric Development

2013-04-08
2013-01-1029
In recent years, there has been a growing interest in driver visibility. This is, in part, due to increasing emphasis placed on design factors influencing visibility such as: aerodynamics, styling, structural stiffness and vehicle packaging. During the development process of a vehicle, it is important to be able to quantify all of these factors. Visibility, however, owing to its sensory nature, has been harder to quantify. As a result, General Motors (GM) has undertaken a study to gain deeper insight into customer perceptions surrounding visibility. Clinics were conducted to help determine the relative importance of different metrics. The paper also explores several new metrics that can help predict customer satisfaction based on vehicle configuration.
Technical Paper

Cellulosic Ethanol Fuel Quality Evaluation and its Effects on PFI Intake Valve Deposits and GDI Fuel Injector Plugging Performance

2013-04-08
2013-01-0885
The U.S. Renewable Fuel Standard 2 (RFS2) mandates the use of advanced renewable fuels such as cellulosic ethanol to be blended into gasoline in the near future. As such, determining the impact of these new fuel blends on vehicle performance is important. Therefore, General Motors conducted engine dynamometer evaluations on the impact of cellulosic ethanol blends on port fuel injected (PFI) intake valve deposits and gasoline direct injected (GDI) fuel injector plugging. Chemical analysis of the test fuels was also conducted and presented to support the interpretation of the engine results. The chemical analyses included an evaluation of the specified fuel parameters listed in ASTM International's D4806 denatured fuel ethanol specification as well as GC/MS hydrocarbon speciations to help identify any trace level contaminant species from the new ethanol production processes.
Journal Article

Evaluation of Dynamic Roof Deformation in Rollover Crash Tests

2011-04-12
2011-01-1093
Although the measured amount of roof deformation associated with a given rollover crash test is often the residual or post test deformation, rollover crash test researchers are aware that roof deformation occurs dynamically throughout the rollover event with varying magnitude. The challenge to quantifying dynamic roof deformation has been the lack of a reliable method to measure and record the dynamic roof deformation during the rollover test. Researchers have explored various methods to measure dynamic roof deformation including the use of film analysis of external targets, accelerometers, string potentiometers, and 3D photogrammetry. This paper discusses a series of simulated curb trip rollover tests conducted to study and compare different methodologies to measure and record dynamic roof deformation.
Journal Article

Effects of Safety Belt Pretensioning on ATD Motion in Rigid Fixture Rollover Testing

2011-04-12
2011-01-1118
General Motors conducted a series of subsystem rigid fixture sled rollover tests to evaluate the effects of various safety belt pyrotechnic pretensioners on Anthropomorphic Test Device (ATD) head motion. Twelve tests were conducted using a rigid fixture comprised of a modified compact sport utility vehicle (SUV) body encased in a rigid exoskeleton. The testing simulated the pre-trip/trip, free flight and first roof to ground impact phases of a field representative curb trip initiation rollover crash test with a roof to ground impact angle of approximately 180 degrees. Various combinations of safety belt lap anchor, buckle and retractor pretensioners were tested and film analysis was used to measure trailing side ATD head motion relative to the vehicle. Additionally, a new analysis technique of measuring the reduction of lap webbing length during the crash event was developed for evaluating the ability of a restraint system to reduce ATD head motion during the rollover tests.
Technical Paper

Advanced Field Study of Rollover Sensor Equipped Vehicles

2011-04-12
2011-01-1113
General Motors (GM), OnStar and the University of Michigan International Center for Automotive Medicine (ICAM) have formed a partnership to investigate and analyze real world rollover crashes involving GM vehicles equipped with rollover sensing technology and rollover-capable roof rail airbag systems. Candidates for the study are initially identified by OnStar, who receive notification of a rollover crash through the vehicle's Automatic Crash Response system. If the customer agrees to participate in the study, medical, vehicle and crash scene information are quickly gathered. This information is then reviewed by the medical and GM engineering communities to provide field relevant learning on injury mechanisms and vehicle system performance in rollover events. This paper provides a detailed review of the field case studies collected to date.
Technical Paper

The Development of Advanced 2-Way SCR/DPF Systems to Meet Future Heavy-Duty Diesel Emissions

2011-04-12
2011-01-1140
Diesel engines have the potential to significantly increase vehicle fuel economy and decrease CO₂ emissions; however, efficient removal of NOx and particulate matter from the engine exhaust is required to meet stringent emission standards. A conventional diesel aftertreatment system consists of a Diesel Oxidation Catalyst (DOC), a urea-based Selective Catalyst Reduction (SCR) catalyst and a diesel particulate filter (DPF), and is widely used to meet the most recent NOx (nitrogen oxides comprising NO and NO₂) and particulate matter (PM) emission standards for medium- and heavy-duty sport utility and truck vehicles. The increasingly stringent emission targets have recently pushed this system layout towards an increase in size of the components and consequently higher system cost. An emerging technology developed recently involves placing the SCR catalyst onto the conventional wall-flow filter.
Technical Paper

The Effect of Pt-Pd Ratio on Oxidation Catalysts Under Simulated Diesel Exhaust

2011-04-12
2011-01-1134
With a tighter regulatory environment, reduction of hydrocarbon emissions has emerged as a major concern for advanced low-temperature combustion engines. Currently precious metal-based diesel oxidation catalysts (DOC) containing platinum (Pt) and palladium (Pd) are most commonly used for diesel exhaust hydrocarbon oxidation. The efficiency of hydrocarbon oxidation is greatly enhanced by employing both Pt and Pd together compared to the case with Pt or Pd alone. However, there have been few systematic studies to investigate the effects of the ratio of platinum to palladium on catalytic oxidation over the DOC. The present study illustrates the relationship between the Pt-Pd ratio and catalyst activity and stability by evaluating a series of catalysts with various Pt to Pd ratios (1:0, 7:1, 2:1, 1:2, 1:5, 0:1). These catalysts were tested for their CO and hydrocarbon light-off temperatures under simulated conditions where both unburned and partially burned hydrocarbons were present.
Technical Paper

Safety Belt and Occupant Factors Influencing Thoracic & Upper Abdominal Injuries in Frontal Crashes

2011-04-12
2011-01-1129
This paper reports on a study that examines the effect of shoulder belt load limiters and pretensioners as well as crash and occupant factors that influence upper torso harm in real-world frontal crashes. Cases from the University of Michigan International Center for Automotive Medicine (ICAM) database were analyzed. Additional information was used from other databases including the National Highway Traffic Safety Administration (NHTSA) New Car Assessment Program (NCAP), the Insurance Institute for Highway Safety (IIHS), the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS), and patient data available from the University of Michigan Trauma Center. The ICAM database is comprised of information from real-world crashes in which occupants were seriously injured and required treatment at a Level 1 Trauma Center.
Technical Paper

Effects of Fuel Ethanol Quality on Vehicle System Components

2011-04-12
2011-01-1200
Corn ethanol has been used for fuel blending as both an oxygenate and octane booster and in most U.S. states conform to the ASTM D5798 fuel ethanol quality standard. Today the fuel ethanol market is expanding the types of feedstocks used to make ethanol and changing the processing techniques. These non-corn alternative feedstocks used to produce fuel ethanol bring new chemical components into the product that are not monitored under the D5798 standard, and it is unclear if they will result in material compatibility challenges for vehicle fuel systems that could affect performance and emissions. The vehicle contains a variety of plastic, metallic, and polymeric materials in the fuel tank, fuel pump, engine, and exhaust system that are sensitive to water, ions, acids, and high molecular weight compounds.
Technical Paper

Effectiveness of Cold Soak Filtration Test to Predict Precipitate Formation in Biodiesel

2011-04-12
2011-01-1201
Biodiesel use is increasing around the world. Vehicle failures due to filter clogging issues have been reported in the field with use of biodiesel blended fuels in winter months. In certain instances, filter clogging was caused by precipitate formation above the cloud point of the fuel. Minor contaminants in biodiesel such as sterol glucosides and saturated monoglycerides are suspected to cause precipitation above the cloud point. ASTM has added a requirement to test biodiesel fuel for cold soak filtration test to prevent occurrences of this phenomenon of precipitation above the cloud point. This study focuses on understanding the correlation between cold soak filtration test results and presence of contaminants such as sterol glucosides and saturated monoglycerides in biodiesel fuels. Test samples were also subjected to thermal cycling at temperatures below the cloud point of fuel to co-correlate the cold soak filtration test results to visual observation of precipitate formation.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
X