Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Journal Article

Plug-In Electric Vehicle Charge Time Robustness

2011-04-12
2011-01-0065
With the introduction of plug-in electric vehicles (PEVs), the conventional mindset of “fill-up time” will be challenged as customers top off their battery packs. For example, using a standard 120VAC outlet, it may take over 10hrs to achieve 40-50 miles of EV range-making range anxiety a daunting reality for EV owners. As customers adapt to this new mindset of charge time, it is critical that automotive OEMs supply the consumer with accurate charge time estimates. Charge time accuracy relies on a variety of parameters: battery pack size, power source, electric vehicle supply equipment (EVSE), on-board charging equipment, ancillary controller loads, battery temperature, and ambient temperature. Furthermore, as the charging events may take hours, the initial conditions may vary throughout a plug-in charge (PIC). The goal of this paper is to characterize charging system sensitivities and promote best practices for charge time estimations.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

VOLTEC Battery System for Electric Vehicle with Extended Range

2011-04-12
2011-01-1373
Mid 2006 a study group at General Motors developed the concept for the electric vehicle with extended range (EREV),. The electric propulsion system should receive the electrical energy from a rechargeable energy storage system (RESS) and/or an auxiliary power unit (APU) which could either be a hydrogen fuel cell or an internal combustion engine (ICE) driven generator. The study result was the Chevrolet VOLT concept car in the North American Auto Show in Detroit in 2007. The paper describes the requirements, concepts, development and the performance of the battery used as RESS for the ICE type VOLTEC propulsion system version of the Chevrolet Volt. The key requirement for the RESS is to provide energy to drive an electric vehicle with “no compromised performance” for 40 miles. Extended Range Mode allows for this experience to continue beyond 40 miles.
Journal Article

Fatigue Behavior and Life Prediction for Aluminum Castings in the Absence of Casting Flaws

2011-04-12
2011-01-0193
Cast aluminum alloys are increasingly used in cyclically loaded automotive structural applications for light weight and fuel economy. The fatigue resistance of aluminum castings strongly depends upon the presence of casting flaws and characteristics of microstructural constituents. The existence of casting flaws significantly reduces fatigue crack initiation life. In the absence of casting flaws, however, crack initiation occurs at the fatigue-sensitive microstructural constituents. Cracking and debonding of large silicon (Si) and Fe-rich intermetallic particles and crystallographic shearing from persistent slip bands in the aluminum matrix play an important role in crack initiation. This paper presents fatigue life models for aluminum castings free of casting flaws, which complement the fatigue life models for aluminum castings containing casting flaws published in [1].
Journal Article

Fundamental Approach to Investigate Pre-Ignition in Boosted SI Engines

2011-04-12
2011-01-0340
A comprehensive experimental and theoretical approach was undertaken to understand the phenomenon of pre-ignition and to assess parameters to improve or even eliminate it completely. Oil mixing with fuel was identified as the leading theory of self ignition of the fuel. End of compression temperature has to meet a minimum level for pre-ignition to take place. In this work a comprehensive list of parameters were identified that have a direct and crucial role in the onset of pre-ignition including liner wetting, injection targeting, stratification, mixture motion and oil formulation. Many secondary effects were identified including ring dynamics, ring tension, spark plug electrode temperature and coolant temperature. CFD has been extensively used to understand test results including wall film, A/F ratio distribution and temperature at the end of compression when looked at in the context of fuel evaporation and mixing.
Journal Article

Challenges in Real Time Controls Simulation (Hardware-In-the-Loop) in Active Safety for Subsystem Level Software Verification

2011-04-12
2011-01-0450
As the new features for driver assistance and active safety systems are growing rapidly in vehicles, the simulation within a virtual environment has become a necessity. The current active safety system consists of Electronic Control Units (ECUs) which are coupled to camera and radar sensors. Two methods of implementation exists, integrated sensors with control modules or separation of sensors form control modules. The subsystem integration testing poses new challenges for virtual environment for simulation of active safety features. The comprehensive simulation environment for integration testing consists of chassis controls, powertrain, driver assistance, body and displays controllers. Additional complexity in the system is the serial communication strategy. Multiple communication protocols such as GMLAN, LIN, standard CAN, and Flexray could be present within the same vehicle topology.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Modeling/Analysis of Pedestrian Back-Over Crashes from NHTSA's SCI Database

2011-04-12
2011-01-0588
An analysis of the first 35 back-over crashes reported by NHTSA's Special Crash Investigations unit was undertaken with two objectives: (1) to test a hypothesized classification of backing crashes into types, and (2) to characterize scenario-specific conditions that may drive countermeasure development requirements and/or objective test development requirements. Backing crash cases were sorted by type, and then analyzed in terms of key features. Subsequent modeling of these SCI cases was done using an adaptation of the Driving Reliability and Error Analysis Methodology (DREAM) and Cognitive Reliability and Error Analysis Methodology (CREAM) (similar to previous applications, for instance, by Ljung and Sandin to lane departure crashes [10]), which is felt to provide a useful tool for crash avoidance technology development.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Development of a Camera-Based Forward Collision Alert System

2011-04-12
2011-01-0579
Forward Collision Alert (or Forward Collision Warning) systems provide alerts intended to assist drivers in avoiding or mitigating the harm caused by rear-end crashes. These systems currently use front-grille mounted, forward-looking radar devices as the primary sensor. In contrast, Lane Departure Warning (LDW) systems employ forward-looking cameras mounted behind the windshield to monitor lane markings ahead and warn drivers of unintended lane violations. The increasing imaging sensor resolution and processing capability of forward-looking cameras, as well recent important advances in machine vision algorithms, have pushed the state-of-the-art for camera-based features. Consequently, camera-based systems are emerging as a key crash avoidance system component in both a primary and supporting sensing role. There are currently no production vehicles with cameras used as the sole FCA sensing device.
Journal Article

Reliability and Safety/Integrity Analysis for Vehicle-to-Vehicle Wireless Communication

2011-04-12
2011-01-1045
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications are gaining increasing importance in automotive research and engineering domains. The novel communication scheme is targeted to improve driver safety (e.g., forward collision warnings) and comfort (e.g., routing to avoid congestion, automatic toll collection, etc.). Features exploiting these communication schemes are still in the early stages of research and development. However, growing attention to system wide infrastructure - in terms of OEM collaboration on interface standardization, protocol standardization, and government supported road/wireless infrastructure - will lead to popularity of such features in the future. This paper focuses on evaluating reliability and safety/integrity of data communicated over the wireless channels for early design verification. Analysis of a design can be done based on formal models, simulation, emulation, and testing.
Journal Article

Analysis of Pre-Crash Data Transferred over the Serial Data Bus and Utilized by the SDM-DS Module

2011-04-12
2011-01-0809
The primary function of an airbag control module is to detect crashes, discriminate and predict if a deployment is necessary, then deploy the restraint systems including airbags and where applicable, pretensioners. At General Motors (GM), the internal term for airbag control module is Sensing and Diagnostic Module (SDM). In the 1994 model year, GM introduced its SDM on some of its North American airbag-equipped vehicles. A secondary function of that SDM and all subsequent SDMs is to record crash related data. This data can include data regarding impact severity from internal accelerometers and pre-crash vehicle data from various chassis and powertrain modules. Previous researchers have addressed the accuracy of both the velocity change data, recorded by the SDM, and the pre-crash data, but the assessment of the timing of the pre-crash data has been limited to a single family of modules (Delphi SDM-G).
Journal Article

FMVSS126 Electronic Stability Control Sine With Dwell Incomplete Vehicle Type 2 Analysis

2011-04-12
2011-01-0956
Incomplete vehicles are partially manufactured by an Original Equipment Manufacturer (OEM) and subsequently sold to and completed by a final-stage manufacturer. Section S8.8, Final-Stage Manufacturers and Alterers, of Federal Motor Vehicle Safety Standard (FMVSS) 126 states “Vehicle that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with Part 567 of this chapter, are not subject to the requirements of S8.1 through S8.5. Instead, all vehicles produced by these manufacturers on or after September 1, 2012, must comply with this standard.” The FMVSS 126 compliance of the completed vehicle can be certified in three ways: by the OEM provided no alterations are made to identified components (TYPE 1), conditionally by the OEM provided the final-stage manufacturer follows specific guidelines (TYPE 2), or by the final-stage manufacturer (TYPE 3).
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Journal Article

Evaluation of Dynamic Roof Deformation in Rollover Crash Tests

2011-04-12
2011-01-1093
Although the measured amount of roof deformation associated with a given rollover crash test is often the residual or post test deformation, rollover crash test researchers are aware that roof deformation occurs dynamically throughout the rollover event with varying magnitude. The challenge to quantifying dynamic roof deformation has been the lack of a reliable method to measure and record the dynamic roof deformation during the rollover test. Researchers have explored various methods to measure dynamic roof deformation including the use of film analysis of external targets, accelerometers, string potentiometers, and 3D photogrammetry. This paper discusses a series of simulated curb trip rollover tests conducted to study and compare different methodologies to measure and record dynamic roof deformation.
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
X