Refine Your Search

Topic

Author

Search Results

Video

OBD Challenges for Plug In Hybrid Electric Vehicles

2012-01-30
Plug-In Hybrid and Extended Range Electric Vehicle's have quickly become the focus of many OEM's and suppliers. Existing regulations and test procedures did not anticipate this rapid adoption of this new technology, resulting in many product development challenges. The lack of clear requirements is further complicated by CARBs consideration of CO2 inclusion in their next light duty OBD regulation. This presentation provides an overview of the regulatory requirements for OBD systems on hybrid vehicles that intend to certify in California. Near term challenges for EREV?s and PHEV?s are discussed, including concerns with the existing denominator and warm-up cycle calculations. Some proposals are made to address these concerns. Presenter Andrew Zettel, General Motors Company
Technical Paper

Model-Based Analysis of V2G Impact on Battery Degradation

2017-03-28
2017-01-1699
Vehicle-to-Grid (V2G) service has a potential to improve the reliability and stability of the electrical grid due to the ability of providing bi-directional power flow from/to the grid. However, frequent charging/discharging may impact the battery lifetime. This paper presents the analysis of battery degradation in three scenarios. In the first scenario, different battery capacities are considered. In the second scenario, the battery degradation with various depth of discharge (DOD) are studied. In the third scenario, the capacity loss due to different charging regime are compared. The charging/discharging of plug-in electric vehicles (PEVs) are simulated in a single-phase microgrid system integrated with a photovoltaics (PV) farm, an energy storage system (ESS), and ten electric vehicle service equipment (EVSE). The battery degradation model is an energy throughput model, which is developed based on the Arrhenius equation and a power law relationship between time and capacity fading.
Technical Paper

Integration of OpenADR with Node-RED for Demand Response Load Control Using Internet of Things Approach

2017-03-28
2017-01-1702
The increased market share of electric vehicles and renewable energy resources have raised concerns about their impact on the current electrical distribution grid. To achieve sustainable and stable power distribution, a lot of effort has been made to implement smart grids. This paper addresses Demand Response (DR) load control in a smart grid using Internet of Things (IoT) technology. A smart grid is a networked electrical grid which includes a variety of components and sub-systems, including renewable energy resources, controllable loads, smart meters, and automation devices. An IoT approach is a good fit for the control and energy management of smart grids. Although there are various commercial systems available for smart grid control, the systems based on open sources are limited. In this study, we adopt an open source development platform named Node-RED to integrate DR capabilities in a smart grid for DR load control. The DR system employs the OpenADR standard.
Technical Paper

Voltec Battery Design and Manufacturing

2011-04-12
2011-01-1360
In July 2007, GM announced that it would produce the Chevy Volt, the first high-production volume electric vehicle with extended range capability, by 2010. In January 2009, General Motors announced that the Chevrolet Volt's lithium ion Battery Pack, capable of propelling the Chevy Volt on battery-supplied electric power for up to 40 miles, would be designed and assembled in-house. The T-shaped battery, a subset of the Voltec propulsion system, comprises 288 cells, weighs 190 kg, and is capable of supplying over 16 kWh of energy. Many technical challenges presented themselves to the team, including the liquid thermal management of the battery, the fast battery pack development timeline, and validation of an unproven high-speed assembly process. This paper will first present a general overview of the approach General Motors utilized to bring the various engineering organizations together to design, develop, and manufacture the Volt battery.
Technical Paper

High Voltage Power Allocation Management of Hybrid/Electric Vehicles

2011-04-12
2011-01-1022
As the automotive industry moves toward producing more advanced hybrid/electric vehicles, high voltage Rechargeable Energy Storage Systems (RESS) are now being implemented as the main power source of the vehicle, replacing the need for the traditional Internal Combustion Engine (ICE) altogether or just during certain parts of a drive cycle. With this type of architecture, it is becoming a necessity to equip these vehicles with devices that can draw their power from the high voltage (HV) RESS. These HV devices are not only used to support the propulsion of the vehicle but to perform other necessary vehicle functions as well. With demands of high voltage power from multiple systems ranging from RESS thermal conditioning, cabin thermal conditioning, RESS charging, and vehicle propulsion, power demands can exceed the available power of the vehicle. This creates a perplexing problem of how to manage the high voltage power consumption between the different vehicle systems.
Technical Paper

Comprehensive Overview of Human Interface for an Extended Range Electric Vehicle

2011-04-12
2011-01-1023
An Extended Range Electric vehicle brings a wealth of new features since it is capable of driving on battery alone, has a range extending engine, and has a high voltage battery pack that can be recharged by plugging into wall power. The customer is able to interact with the vehicle's plug-in charging system through mobile applications. Along with all these new features is the challenge of designing a driver interface to provide important information to the customer. This paper will describe the unique customer interface features added to the vehicle, and will include some additional specifics related to the hardware used to provide the information.
Technical Paper

Plug-In Charging Feature

2011-04-12
2011-01-1013
As the auto industry becomes more dependent upon Electric Vehicles (Plug-In Hybrid Electric Vehicles, Battery Electric Vehicles, and Extended Range Electric Vehicles), the Plug-In Charging Feature will become an integral part of the driver's daily routine. The Plug-In Charging feature enables off-board electrical power grid (grid based) power to be used immediately or at a later time by on-vehicle functions. The primary use of this grid power is to charge the vehicle's High Voltage (HV) battery, but other uses also do exist. These functions will mainly be active when the vehicle is off.
Technical Paper

Probability of a Crash During Plug-in Charging

2011-04-12
2011-01-1008
Plug-in electric vehicles are becoming increasingly popular as the U.S. and other nations look for ways to reduce the usage of petroleum fuels and reduce the carbon emission footprint. Though plug-in electric vehicles offer many advantages over conventional vehicles, they also present some unique potential hazards due to the presence of high voltage in the vehicle. Specifically, potential high voltage hazards can occur if the electric vehicle is crashed by another vehicle during its plug-in charging session. High voltage hazards include the possibility of electrical shock and thermal events as a result of electrical arcing that can cause injury or death to persons that operate or work around plug-in electric vehicles. Automotive Safety Integrity Level (ISO 26262), often abbreviated as ASIL, is used by the automotive industry for determining the ranking of safety hazards.
Technical Paper

Optimizing Battery Sizing and Vehicle Lightweighting for an Extended Range Electric Vehicle

2011-04-12
2011-01-1078
In designing vehicles with significant electric driving range, optimizing vehicle energy efficiency is a key requirement to maximize the limited energy capacity of the onboard electrochemical energy storage system. A critical factor in vehicle energy efficiency is the vehicle mass. Optimizing mass allows for the possibility of either increasing electric driving range with a constant level of electrochemical energy storage or holding the range constant while reducing the level of energy storage, thus reducing storage cost. In this paper, a methodology is outlined to study the tradeoff between the battery cost savings achieved by vehicle mass reduction for a constant electric driving range and the cost associated with lightweighting a vehicle. This methodology enables informed business decisions about the available engineering options for lightweighting early in the vehicle development process. The methodology was applied to a compact extended-range electric vehicle (EREV) concept.
Technical Paper

High Voltage Connect Feature

2011-04-12
2011-01-1266
Extended Range Electric Vehicles (EREVs), which are Off board charging capable Electric Vehicles (EV) with an on board charging generator, rely on very complex Rechargeable Energy Storage Systems (RESS) and High Voltage (HV) distribution systems to enable operation as both an EV and an EREV. The connect feature manages the connection and disconnection of a High Voltage (HV) Rechargeable Energy Storage System (RESS) to and from the high voltage components in the vehicle. The RESS is connected to the vehicle's high voltage system to enable vehicle operation. The HV connect feature is a part of occupant, service personnel and first responder safety for all General Motors vehicles that contain high voltage systems. Implementation of the connect feature is the method deployed in GM vehicles to meet high voltage FMVSS requirements.
Technical Paper

Co-Development of Chevy Volt Tire Properties to Balance Performance and Electric Vehicle Range

2011-04-12
2011-01-0096
As an innovative electric vehicle with some new approaches to energy usage and vehicle performance balance, the Chevy Volt required a special relationship between the OEM and tire supplier community. This paper details this relationship and how advanced tools and technology were leveraged between OEM and supplier to achieve tire component and overall vehicle performance results.
Technical Paper

Programmable Charging for Electric Vehicles

2011-04-12
2011-01-0041
With the rising cost of gasoline causing the adoption of the electric car into the lives of average consumers, new avenues of transportation cost control and consumer-vehicle interaction can be explored. Unlike a conventional ICE vehicle where a consumer cannot control the cost of what he or she pays for the fuel source, an electric vehicle provides a means for the consumer to directly impact the price for which they “fill-up”. GM's Programmable Charging feature offers a way for consumers to work directly with the power company to charge their electric vehicles during the most cost efficient hours. The consumer has the option to either start charging when plugging in the vehicle or utilizing the Programmable Charging feature to select a lower cost time to charge their vehicle's battery. Utilizing this feature also benefits the power companies by reducing demand on the Grid during peak usage hours when a customer would typically be charging her vehicle.
Technical Paper

Modeling of Battery Pack Thermal System for a Plug-In Hybrid Electric Vehicle

2011-04-12
2011-01-0666
Fuel economy and stringent emissions requirements have steered the automotive industry to invest in advanced propulsion hybrids, including Plug-in hybrid vehicles (PHEV) and Fuel cell vehicles. The choice of battery technology, its power and thermal management and the overall vehicle energy optimization during different conditions are crucial design considerations for PHEVs and battery electric vehicles (BEV). Current industry focus is on Li-Ion batteries due to their high energy density. However, extreme operating temperatures may impact battery life and performance. Different cooling strategies have been proposed for efficient thermal management of battery systems. This paper discusses the modeling and analysis strategy for a thermally managed Lithium Ion (Li-Ion) battery pack, with coolant as the conditioning medium.
Technical Paper

Voltec Charging System EMC Requirements and Test Methodologies

2011-04-12
2011-01-0742
With the advent of vehicle manufacturer driven on-board charging systems for plug-in and extended range electric vehicles, such as the Chevrolet Volt, important considerations need to be comprehended in both the requirements specified as well as the test methodologies and setups for electromagnetic compatibility (EMC). Typical automotive EMC standards (such as the SAE J551 and SAE J1113 series) that cover 12 volt systems have existed for many years. Additionally, there has been some development in recent years for high voltage EMC for automotive applications. However, on-board charging for vehicles presents yet another challenge in adopting requirements that have typically been in the consumer industry realm and merging those with both the traditional 12 V based system requirements as well as high voltage based systems.
Technical Paper

Analytical Evaluation of Propulsion System Architectures for Future Urban Vehicles

2011-04-12
2011-01-0861
Today, nearly half of the world population lives in urban areas. As the world population continues to migrate to urban areas for increased economic opportunities, addressing personal mobility challenges such as air pollution, Greenhouse Gases (GHGs) and traffic congestion in these regions will become even a greater challenge especially in rapidly growing nations. Road transportation is a major source of air pollution in urban areas causing numerous health concerns. Improvements in automobile technology over the past several decades have resulted in reducing conventional vehicle tailpipe emissions to exceptionally low levels. This transformation has been attained mainly through advancements in engine and transmission technologies and through partial electrification of vehicles. However, the technological advancements made so far alone will not be able to mitigate the issues due to increasing GHGs and air pollution in urban areas.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

Powertrain Mount Load Mitigation on Hybrid and Electric Vehicles

2011-04-12
2011-01-0949
The development and validation of an electric vehicle presents numerous issues that are not normally encountered during the development of a traditional internal combustion powered vehicle. Many of the issues that are encountered involve components that are common to both electric and internal combustion vehicles but are utilized in new or unique ways that may present challenges during the development process. The integration of the electric motors, power supply, batteries, and associated content into a traditional vehicle can bring new and challenging issues to light. This paper discusses the solution for an issue that arose during the testing and development of the chassis and powertrain hardware of an electric vehicle. In particular, the large rotational inertia of the electric drive motor presented significant challenges when it was accelerated by forces that were external to the drive unit.
Technical Paper

Communication for Plug-in Electric Vehicles

2012-04-16
2012-01-1036
This paper is the third in the series of documents designed to record the progress on the SAE Plug-in Electric Vehicle (PEV) communication task force. The initial paper (2010-01-0837) introduced utility communications (J2836/1™ & J2847/1) and how the SAE task force interfaced with other organizations. The second paper (2011-01-0866) focused on the next steps of the utility requirements and added DC charging (J2836/2™ & J2847/2) along with initial effort for Reverse Power Flow (J2836/3™ & J2847/3). This paper continues with the following: 1. Completion of DC charging's 1st step publication of J2836/2™ & J2847/2. 2. Completion of 1st step of communication requirements as it relates to PowerLine Carrier (PLC) captured in J2931/1. This leads to testing of PLC products for Utility and DC charging messages using EPRI's test plan and schedule. 3. Progress for PEV communications interoperability in J2953/1.
Technical Paper

Development of the Chevrolet Volt Portable EVSE

2011-04-12
2011-01-0878
The plug-in vehicles developed in the 1990's ushered in the first standards for electrified vehicles. These standards included requirements for Electric Vehicle Supply Equipment or EVSEs. EVSE is a general term for all the non vehicle components needed to charge a plug-in vehicle. These components include cabling, connectors and shock safety equipment. EVSEs are used to charge vehicles at home, work and in commercial settings. Many people identify EVSEs with public charge stations. While public charge stations are iconic with plug-in vehicles, these are just one type of EVSE. Until public EVSEs become readily available, plug-in vehicle drivers will need to partially rely on portable versions of EVSE. Portable EVSEs are required to provide the identical function and safety protection as their stationary cousins but their portability brings unique challenges and design considerations.
Technical Paper

Determining Most Energy Efficient Cooling Control Strategy of a Rechargeable Energy Storage System

2011-04-12
2011-01-0893
Plug in hybrid electric vehicles (PHEV) and electric vehicles (EV) are using large lithium ion battery packs to store energy for powering electric traction motors. These batteries, or Rechargeable Energy Storage Systems (RESS), have a narrow temperature operating range and require thermal management systems to properly condition the batteries for use in automotive applications. This paper will focus on energy optimization of a RESS cooling system. The battery thermal management system for the General Motors Chevrolet Volt has three distinct modes for battery cooling: active cooling, passive cooling, and bypass. Testing was conducted on each individual thermal cooling mode to optimize, through control models, the energy efficiency of the system with the goal of maximizing electric vehicle range.
X