Refine Your Search

Topic

Author

Search Results

Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

A Demonstration of Local Heat Treatment for the Preform Annealing Process

2011-04-12
2011-01-0538
The preform annealing process is a two-stage stamping method for shaping non age-hardenable (i.e. 5000 series) aluminum sheet panels in which the panel is heat treated in between the two steps to improve overall formability of the material. The intermediate annealing heat treatment eliminates the cold work accumulated in the material during the first draw. The process enables the ability to form more complex parts than a conventional aluminum stamping process. A demonstration of local annealing for this process was conducted to form a one-piece aluminum liftgate inner panel for a large sport utility vehicle using the steel product geometry without design concessions. In prior work, this process was demonstrated by placing the entire panel in a convection oven for several minutes to completely anneal the cold work.
Journal Article

Formability Analysis Predictions for Preform Annealing of Aluminum Sheet

2011-04-12
2011-01-0533
It is important to understand the accuracy level of the formability analysis for any new process so that correct predictions can be made in product and die design. This report focuses on the formability analysis methodology developed for the preform anneal process. In this process, the aluminum panel is partially formed, annealed to eliminate the cold work from the first step, and then formed to the final shape using the same die. This process has the ability to form more complex parts than conventional aluminum stamping, and has been demonstrated on a complex one-piece door inner and a complex one-piece liftgate inner with AA5182-O3. Both panels only required slight design modifications to the original steel product geometry. This report focuses on the formability analysis correlation with physical panels for the liftgate inner, considering both full panel anneal in a convection oven and local annealing of critical areas.
Journal Article

Effect of Temperature and Aeration on Fluid-Elastomer Compatibility

2013-04-08
2013-01-0652
To investigate the effect of aeration on fluid-elastomer compatibility, 4 types of elastomers were aged in three gear lubes. The four types of elastomers include a production fluorinated rubber (FKM) and production hydrogenated nitrile rubber (HNBR) mixed by the part fabricator, a standard low temperature flexible fluorinated rubber (FKM, ES-4) and a standard ethylene-acrylic copolymer (AEM, ES-7) mixed by SAE J2643 approved rubber mixer. The three gear lubes are Fluid a, Fluid b and Fluid c, where Fluid b is a modified Fluid with additional friction modifier, and Fluid c is friction modified chemistry from a different additive supplier. The aeration effect tests were performed at 125°C for 504 hours. The aerated fluid aging test was performed by introducing air into fluid aging tubes as described in General Motors Company Materials Specification GMW16445, Appendix B, side-by-side with a standard ASTM D471 test.
Journal Article

Development of Liftgate Hinge-to-Roof Sealing Gasket Material for Uncoated Steel Roof Panels

2011-04-12
2011-01-0072
The sealing of a lift gate hinge to the body structure is necessary to avoid both the onset of corrosion and to avoid water intrusion into the interior compartment. The hinge-to-body interface typically involves horizontal metal-to-metal surface contact, creating the perfect environment for moisture entrapment and corrosion initiation. The choice of body panel material (uncoated (bare) steel vs. coated (galvanized) steel) drives different sealing approaches especially when considering corrosion avoidance.
Technical Paper

A Comparison Between Power Injection and Impulse Response Decay Methods for Estimating Frequency Averaged Loss Factors for SEA

2003-05-05
2003-01-1566
Damping measurements on vehicle subsystems are rarely straightforward due to the complexity of the dynamic interaction of system joints, trim, and geometry. Various experimental techniques can be used for damping estimation, such as frequency domain modal analysis curve-fitting methods, time domain decay-rate methods, and other methods based on energy and wave propagation. Each method has its own set of advantages and drawbacks. This paper describes an analytical and an experimental comparison between two, widely used loss factor estimation techniques frequently used in Statistical Energy Analysis (SEA). The single subsystem Power Injection Method (PIM) and the Impulse Response Decay Method (IRDM) were compared using analytical models of a variety of simulated simple spring-mass-damper systems. Frequency averaged loss factor values were estimated from both methods for comparison.
Technical Paper

Prevention of Premature Failure of Electric Motors in Proximity to Lubricants

2011-04-12
2011-01-0207
Small electric DC (Direct Current) motors used to actuate various mechanisms in vehicles have failed prematurely when exposed to some formulations of lubricants, which leached into the motor and caused shorting. The subject study explored this failure mechanism in detail as evidenced in vehicle power door lock actuators. Experiments were conducted through the application of various types of lubricants to motors in varying ways to re-create the failure mode experienced by the authors, and to determine an optimized selection of lubricant for maximized cycle life, robust to inherent component manufacturing process variation in both the amount and location of lubrication placement. The detailed data, photographs and conclusions which resulted were summarized. The electric motor failure mode experienced in the example situation was first explained and illustrated with detailed photography.
Technical Paper

Dimensional Quality Control of Repeated Molded Polymer Battery Cell Housings in Automotive Energy Systems

2011-04-12
2011-01-0244
Current manufacture of alternative energy sources for automobiles, such as fuel cells and lithium-ion batteries, uses repeating energy modules to achieve targeted balances of power and weight for varying types of vehicles. Specifically for lithium-ion batteries, tens to hundreds of identical plastic parts are assembled in a repeating fashion; this assembly of parts requires complex dimensional planning and high degrees of quality control. This paper will address the aspects of dimensional quality for repeated, injection molded thermoplastic battery components and will include the following: First, dimensional variation associated with thermoplastic components is considered. Sources of variation include the injection molding process, tooling or mold, lot-to-lot material differences, and varying types of environmental exposure. Second, mold tuning and cavity matching between molds for multi-cavity production will be analyzed.
Technical Paper

Lightweight MacPherson Strut Suspension Front Lower Control Arm Design Development

2011-04-12
2011-01-0562
The paper will discuss the results of a study to develop lightweight steel proof-of-concept front lower control arm (FLCA) designs that are less expensive and achieve equivalent structural performance relative to a baseline forged aluminum FLCA assembly. A current production forged aluminum OEM sedan FLCA assembly was selected as an aggressive mass target based on competitive benchmarking of vehicles of its size. CAE structural optimization methods were used to determine the initial candidate sheet steel and forged designs. Two (2) sheet steel FLCA designs and one (1) forged steel FLCA design were selected and developed to meet specified performance criteria. An iterative optimization strategy was used to minimize the mass of each design while meeting the specified stiffness, durability, extreme load, and longitudinal buckling strength requirements.
Technical Paper

Investigation of Stamping Tooling Durability for Dual Phase Steels

2011-04-12
2011-01-1060
Advanced High-Strength Steels (AHSS) have become an essential part of the lightweighting strategy for automotive body structures. The ability to fully realize the benefits of AHSS depends upon the ability to aggressively form, trim, and pierce these steels into challenging parts. Tooling wear has been a roadblock to stamping these materials. Traditional die materials and designs have shown significant problems with accelerated wear, galling and die pickup, and premature wear and breakage of pierce punches. [1] This paper identifies and discusses the tribological factors that contribute to the successful stamping of AHSS. This includes minimizing tool wear and galling/die pick-up; identifying the most effective pierce clearance (wear vs. burr height) when piercing AHSS; and determining optimal die material and coating performance for tooling stamping AHSS.
Technical Paper

Comparisons of Current Concepts for Press Hardened Steel Tailor Welded Blanks and Tailor Rolled Blanks on Center Pillar Reinforcements

2011-04-12
2011-01-1059
Press hardened steels (PHS) are commonly used in automotive structural applications because of their combination of extremely high strength, load carrying capacity and the ability to form complex shapes in the press hardening process. Recent adoption of increased roof crush standards, side impact requirements and the increased focus on CO2 emissions and mass reduction have led autmotive manufacturers to significantly increase the amount of PHS being designed into future vehicle designs. As a way to further optimize the use of these steels, multi-gauge welded blanks of PHS and multi-material blanks of PHS to microalloyed steels of various thickness have been developed to help achieve these requirements. More recently, tailor rolled PHS, whereby the steel is rolled such that the thickness changes across the width of the sheet, have been developed.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

The Effect of Strain on Stainless Steel Surface Finish

2011-04-12
2011-01-0774
The bright surface finish of exterior automotive moldings made from stainless steel can become hazed and reflections distorted as a result of forming done during the manufacturing processes. Bright moldings are frequently used to give styling differentiation accents to vehicle exteriors. Stainless steel provides cost effective differentiation with a material that is durable and relatively easy to form to shapes desired by the stylist. Because of the desirable attributes of stainless steel, an understanding of the threshold of unacceptable surface appearance is necessary to maximize showroom appeal and avoid customer complaints that result in warranty claims. This paper quantifies the effect that manufacturing strain and strain rate have on the surface finish of 436M2 stainless steel. Controlled experiments were conducted on production grade stainless steel strips subjected to a variety of strain and strain rates typical of manufacturing processes.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

A Fatigue Prediction Method for Spot Welded Joints

2013-04-08
2013-01-1208
Generally linear finite element analysis (FEA) is used to predict fatigue life of spot welded joints in a vehicle body structure. Therefore, the effect of plastic deformation at the vicinity of the spot welded joints is not included on fatigue prediction. This study introduces a simple technique to include the plastic deformation effect without performing elastic-plastic finite element analysis. The S-N curve obtained from fatigue test results is modified to consider this effect. Tensile strength test results of spot welded joint specimens were utilized to find the load range for FEA equivalent to the applied load range for fatigue tests. To demonstrate the proposed approach, fatigue test results of advanced high strength steels (AHSS) for lap-shear and coach peel specimens were used. Both the specimen types were tested at various constant amplitudes with the load ratios of R=0.1 and 0.3.
Technical Paper

A New Multi-point Active Drawbead Forming Die: Model Development for Process Optimization

1998-02-01
980076
A new press/die system for restraining force control has been developed in order to facilitate an increased level of process control in sheet metal forming. The press features a built-in system for controlling drawbead penetration in real time. The die has local force transducers built into the draw radius of the lower tooling. These sensors are designed to give process information useful for the drawbead control. This paper focuses on developing models of the drawbead actuators and the die shoulder sensors. The actuator model is useful for developing optimal control methods. The sensor characterization is necessary in order to develop a relationship between the raw sensor outputs and a definitive process characteristic such as drawbead restraining force (DBRF). Closed loop control of local specific punch force is demonstrated using the die shoulder sensor and a PID controller developed off-line with the actuator model.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

1997-02-24
970986
The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

A Unified Framework of Adaptive Cruise Control for Speed Limit Follower and Curve Speed Control Function

2013-04-08
2013-01-0618
Today many vehicles are being developed with advanced computing and sensing technologies. These new technologies have contributed in enhancing driving safety and convenience. As an example, the Adaptive Cruise Control (ACC) can automatically adjust the vehicle speed to driver's set speed and maintain the driver-requested headway distance to the lead vehicle. In this paper, we further consider the automatic control of speed according to the road attributes, e.g., the speed limit and curve of the road. Two new features, ‘speed limit follower’ and ‘curve speed control’ algorithms, are proposed in this paper. These new features communicate with the conventional ACC system and control the vehicle speed while traveling across different curved roads and speed limit zones. These new features were developed as an independent function, so they can be integrated with any other existing ACC systems.
Technical Paper

Temperature Effects on the Deformation and Fracture of a Quenched-and-Partitioned Steel

2013-04-08
2013-01-0610
Temperature effects on the deformation and fracture of a commercially produced transformation-induced plasticity (TRIP) steel subject to a two-step quenching and partitioning (Q&P) heat treatment are investigated. Strain field evolution at room temperature is quantified in this 980 MPa grade Q&P steel with a stereo digital image correlation (DIC) technique from quasi-static tensile tests of specimens with 0°, 45°, and 90° orientations. Baseline tensile properties along with the variation of the instantaneous hardening index with strain were computed. Variations of the bake-hardening index were explored under simulated paint bake conditions. Tensile properties were measured at selected temperatures between -100°C and 200°C and the TRIP effect was found to be temperature-dependent due to stress-induced martensitic transformation at lower temperatures versus strain-induced transformation at higher temperatures.
Technical Paper

Finite Difference Heat Transfer Model of a Steel-clad Aluminum Brake Rotor

2005-10-09
2005-01-3943
This paper describes the heat transfer model of a composite aluminum brake rotor and compares the predicted temperatures to dynamometer measurements taken during a 15 fade stop trial. The model is based on meshed surface geometry which is simulated using RadTherm software. Methods for realistically modeling heat load distribution, surface rotation, convection cooling and radiation losses are also discussed. A comparison of the simulation results to the dynamometer data shows very close agreement throughout the fade stop trial. As such, the model is considered valid and will be used for further Steel Clad Aluminum (SCA) rotor development.
X