Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

Technical Challenges in Future Electrical Architectures

2011-04-12
2011-01-1021
As part of standardizing the global portfolio, General Motors (GM) created an electrical architecture that will support the GM global product feature set. Introduced in 2009, this common electrical architecture is already being applied to multiple platforms in GM's regional engineering centers. The electrical architecture will be updated regularly to address the needs of new features in the automotive market and to take advantage of the latest technology advancements. The functional requirements of these new features result in technology challenges. In addition, many new features may result in challenges to the vehicle electrical architecture or the vehicle development process. The challenges have been evaluated so that needs and initiatives can be better understood.
Technical Paper

Optimizing Battery Sizing and Vehicle Lightweighting for an Extended Range Electric Vehicle

2011-04-12
2011-01-1078
In designing vehicles with significant electric driving range, optimizing vehicle energy efficiency is a key requirement to maximize the limited energy capacity of the onboard electrochemical energy storage system. A critical factor in vehicle energy efficiency is the vehicle mass. Optimizing mass allows for the possibility of either increasing electric driving range with a constant level of electrochemical energy storage or holding the range constant while reducing the level of energy storage, thus reducing storage cost. In this paper, a methodology is outlined to study the tradeoff between the battery cost savings achieved by vehicle mass reduction for a constant electric driving range and the cost associated with lightweighting a vehicle. This methodology enables informed business decisions about the available engineering options for lightweighting early in the vehicle development process. The methodology was applied to a compact extended-range electric vehicle (EREV) concept.
Technical Paper

Robust Design of a Light Weight Flush Mount Roof Rack

2011-04-12
2011-01-1274
Roof racks are designed for carrying luggage during customers' travels. These rails need to be strong enough to be able to carry the luggage weight as well as be able to withstand aerodynamic loads that are generated when the vehicle is travelling at high speeds on highways. Traditionally, roof rail gage thickness is increased to account for these load cases (since these are manufactured by extrusion), but doing so leads to increased mass which adversely affects fuel efficiency. The current study focuses on providing the guidelines for strategically placing lightening holes and optimizing gage thickness so that the final design is robust to noise parameters and saves the most mass without adversely impacting wind noise performance while minimizing stress. The project applied Design for Six Sigma (DFSS) techniques to optimize roof rail parameters in order to improve the load carrying capacity while minimizing mass.
Technical Paper

Analytical Evaluation of Propulsion System Architectures for Future Urban Vehicles

2011-04-12
2011-01-0861
Today, nearly half of the world population lives in urban areas. As the world population continues to migrate to urban areas for increased economic opportunities, addressing personal mobility challenges such as air pollution, Greenhouse Gases (GHGs) and traffic congestion in these regions will become even a greater challenge especially in rapidly growing nations. Road transportation is a major source of air pollution in urban areas causing numerous health concerns. Improvements in automobile technology over the past several decades have resulted in reducing conventional vehicle tailpipe emissions to exceptionally low levels. This transformation has been attained mainly through advancements in engine and transmission technologies and through partial electrification of vehicles. However, the technological advancements made so far alone will not be able to mitigate the issues due to increasing GHGs and air pollution in urban areas.
Technical Paper

Model Based Torque Converter Clutch Slip Control

2011-04-12
2011-01-0396
To realize better fuel economy benefits from transmissions, car makers have started the application of torque converter clutch control in second gear and beyond, resulting in greater demand on the torque converter clutch (TCC) and its control system. This paper focuses on one aspect of the control of the torque converter clutch to improve fuel economy and faster response of the transmission. A TCC is implemented to control the slip between the pump and turbine of the torque converter, thereby increasing its energy transfer efficiency and increasing vehicle fuel economy. However, due to the non-linear nature of the torque converter fluid coupling, the slip feedback control has to be very active to handle different driver inputs and road-load conditions, such as different desired slip levels, changes in engine input torques, etc. This non-linearity requires intense calibration efforts to precisely control the clutch slip in all the scenarios.
Technical Paper

Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System

2011-04-12
2011-01-0306
Lean-burn SIDI engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. There are several aftertreatment technologies, including the lean NOx trap and active urea SCR, which have been widely considered, but they all suffer from high material cost and require customer intervention to fill the urea solution. Recently reported passive NH₃-SCR system - a simple, low-cost, and urea-free system - has the potential to enable the implementation of lean-burn gasoline engines. Key components in the passive NH₃-SCR aftertreatment system include a close-coupled TWC and underfloor SCR technology. NH₃ is formed on the TWC with short pulses of rich engine operation and the NH₃ is then stored on the underfloor SCR catalysts.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Electrically Heated Catalysts for Cold-Start Emissions in Diesel Aftertreatment

2012-04-16
2012-01-1092
With a tighter regulatory environment, reduction of hydrocarbon (HC) and NOx emissions during cold-start has emerged as a major challenge for diesel engines. In the complex diesel aftertreatment system, more than 90% of engine-out NOx is removed in the underfloor SCR. However, the combination of low temperature exhaust and heat sink over DOC delays the SCR light-off during the cold start. In fact, the first 350 seconds during the cold light-duty FTP75 cycle contribute more than 50% of the total NOx tailpipe emission due to the low SCR temperature. For a fast SCR light-off, electrically heated catalyst (EHC) technology has been suggested to be an effective solution as a rapid warm-up strategy. In this work, the EHC, placed in front of DOC, utilizes both electrical power and hydrocarbon fuel. The smart energy management during the cold-start was crucial to optimize the EHC integrated aftertreatment system.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

Development of the MTU Automatic Shifting Manual Six Speed Transmission

2006-04-03
2006-01-0747
The purpose of this report is to describe the process for the development of the automatically shifting manual transmission control system hardware and software to be used in the MTU Challenge X Equinox, a through-the-road parallel hybrid electric vehicle. The automatically shifting manual transmission was chosen for development, as it combines the ease of use of an automatic transmission with the fuel efficiency of a manual, while eliminating the parasitic losses in the torque converter and the transmission hydraulic pump. This report illustrates the process used to develop the software-in-the loop modeling that was developed for the initial proof of concept. In addition, it describes the development of the control strategy and hardware build for the prototype transmission. To begin the design process research was preformed on existing automatically shifting manuals and manual transmissions in general. From there vehicle subsystems were assembled using Simulink block diagrams.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Journal Article

Micro-Cooling/Heating Strategy for Energy Efficient HVAC System

2011-04-12
2011-01-0644
Energy efficient HVAC system is becoming increasingly important as higher Corporate Average Fuel Economy (CAFE) standards are required for future vehicle products. The present study is a preliminary attempt at designing energy efficient HVAC system by introducing localized heating/cooling concepts without compromising occupant thermal comfort. In order to achieve this goal of reduced energy consumption while maintaining thermal comfort it is imperative that we use an analytical model capable of predicting thermal comfort with reasonable accuracy in a non-homogenous enclosed thermal environment such as a vehicle's passenger cabin. This study will primarily focus on two aspects: (a) energy efficiency improvements in an HVAC system through micro-cooling/heating strategies and (b) validation of an analytical approach developed in GM that would support the above effort.
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Journal Article

Co-Simulation of Multiple Software Packages for Model Based Control Development and Full Vehicle System Evaluation

2012-04-16
2012-01-0951
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
Technical Paper

PHEV Real World Driving Cycle and Energy and Fuel Consumption Reduction Potential for Connected and Automated Vehicles

2019-04-02
2019-01-0307
This paper presents real world driving energy and fuel consumption results for the second-generation Chevrolet Volt plug-in hybrid electric vehicle (PHEV). A drive cycle, local to Michigan Technological University, was designed to mimic urban and highway driving test cycles in terms of distance, transients and average velocity, but with significant elevation changes to establish an energy intensive real world driving cycle for assessing potential energy savings for connected and automated vehicle control. The investigation began by establishing baseline and repeatability of energy consumption at various battery states of charges. It was determined that drive cycle energy consumption under a randomized set of boundary conditions varied within 3.4% of mean energy consumption regardless of initial battery state of charge.
Technical Paper

Impinged Diesel Spray Combustion Evaluation for Indirect Air-Fuel Mixing Processes and Its Comparison with Non-Vaporing Impinging Spray Under Diesel Engine Conditions

2019-04-02
2019-01-0267
Under low-temperature combustion for the high fuel efficiency and low emissions achievement, the fuel impingement often occurs in diesel engines with direct injection especially for a short distance between the injector and piston head/cylinder wall. Spray impingement plays an important role in the mixing-controlled combustion phase since it affects the air-fuel mixing rate through the disrupted event by the impingement. However, the degree of air entrainment into the spray is hard to be directly evaluated. Since the high spray expansion rate could allow more opportunity for fuel to mix with air, in this study, the expansion rate of impinged flame is quantified and compared with the spray expansion rate under non-vaporizing conditions. The experiments were conducted in a constant volume combustion chamber with an ambient density of 22.8 kg/m3 and the injection pressure of 150 MPa.
Technical Paper

Route Optimized Energy Management of a Connected and Automated Multi-mode Hybrid Electric Vehicle using Dynamic Programming

2019-04-02
2019-01-1209
This paper presents a methodology to optimize the blending of Charge Depleting (CD) and Charge Sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV) that reduces overall energy consumption when the selected route cannot be drive purely electric. The PHEV used in this investigation is the second generation Chevrolet Volt and as many as four instrumented vehicles were utilized simultaneously on road to acquire validation data. The optimization method utilized is dynamic programming (DP) and is paired with a reduced fidelity propulsion system and vehicle dynamics model to enable compatibility with embedded controllers and be computationally efficient of the optimal blended operating scheme over an entire drive route.
Technical Paper

Investigation and Optimization of Cam Actuation of an Over-Expanded Atkinson Cycle Spark-Ignited Engine

2019-04-02
2019-01-0250
An over-expanded spark ignited engine was investigated in this work via engine simulation with a design constrained, mechanically actuated Atkinson cycle mechanism. A conventional 4-stroke spark-ignited turbo-charged engine with a compression ratio of 9.2 and peak brake mean effective pressure of 22 bar was selected for the baseline engine. With geometry and design constraints including bore, stroke, compression ratio, clearance volume at top dead center (TDC) firing, and packaging, one over-expanded engine mechanism with over expansion ratio (OER) of 1.5 was designed. Starting with a validated 1D engine simulation model which included calibration of the in-cylinder heat transfer model and SI turbulent combustion model, investigations of the Atkinson engine including cam optimization was studied. The engine simulation study included the effects of offset of piston TDC locations as well as different durations of the 4-strokes due to the mechanism design.
X