Refine Your Search

Topic

Search Results

Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Journal Article

High-Fidelity Transient Thermal Modeling of a Brake Corner

2016-09-18
2016-01-1929
There is an increasing interest in transient thermal simulations of automotive brake systems. This paper presents a high-fidelity CFD tool for modeling complete braking cycles including both the deceleration and acceleration phases. During braking, this model applies the frictional heat at the interface on the contacting rotor and pad surfaces. Based on the conductive heat fluxes within the surrounding parts, the solver divides the frictional heat into energy fluxes entering the solid volumes of the rotor and the pad. The convective heat transfer between the surfaces of solid parts and the cooling airflow is simulated through conjugate heat transfer, and the discrete ordinates model captures the radiative heat exchange between solid surfaces. It is found that modeling the rotor rotation using the sliding mesh approach provides more realistic results than those obtained with the Multiple Reference Frames method.
Technical Paper

General Motors Small Front Wheel Drive Six speed Automatic Transmission Family

2010-04-12
2010-01-0857
General Motors introduced a family of small front wheel drive six speed automatic transmissions for the 2008 model year. The family currently has two variants: 6T40 and 6T45, which cover a range of vehicles from small & compact cars to small SUVs and handle engines torque capacities up to 240 Nm Gas(280 Nm Diesel) & 315 Nm Gas (380 Nm Diesel) respectively. The 6T40/45 transmissions replace GM traditional four speed automatic wrap around transmissions 4T40/45. The wrap around transmissions have Torque Converter, Pump & Controls on the engine axis and the rest of the transmission content on the output axis. The 6T40/45 have an on-axis architecture with majority of the transmission content on the engine axis and final drive & differential on the output axis. The 4T40/45 have input chain transfer whereas the 6T40/45 have an output chain transfer.
Technical Paper

Diagnosis of Off-Brake Performance Issues with Low Range Pressure Distribution Sensors

2010-04-12
2010-01-0073
Brake caliper and corner behavior in the off-brake condition can lead, at times, to brake system performance issues such as residual drag (and related issues such as pulsation, judder, and loss of fuel economy), and caliper pryback during aggressive driving maneuvers. The dynamics in the brake corner can be strikingly complex, with numerous friction interfaces, rubber component and grease dynamics, deflections of multiple components, and significant dependence on usage conditions. Displacements of moving parts are usually small, and the residual forces in the caliper interfaces involved are also small in comparison with other forces acting on the same components, making direct observation very difficult. The present work attempts to illuminate off-brake behavior in two different conditions - residual drag and pryback - through the use of low-range pressure distribution sensors placed in between the caliper (pistons and fingers) and the brake pad pressure plates.
Technical Paper

Automotive A/C System Integrated with Electrically-Controlled Variable Capacity Scroll Compressor and Fuzzy Logic Refrigerant Flow Management

2001-03-05
2001-01-0587
This paper describes the recent efforts on developing an automotive climate control system throughout integrating an electrically-controlled variable capacity scroll compressor with a fuzzy logic control-based refrigerant flow management. Applying electrically-controlled variable capacity compressor technology to climate control systems has a significant impact on improving vehicle fuel economy, achieving higher passenger comfort level, and extending air and refrigerant temperature controllability as well. In this regard, it is very important for automotive climate control engineers to layout a system-level temperature control strategy so that the operation of variable capacity compressor can be optimized through integrating the component control schemes into the system-level temperature control. Electronically controlled expansion devices have become widely available in automotive air conditioning (A/C) systems for the future vehicle applications(1, 2, 3 and 4).
Technical Paper

A Parametric Approach for Rapid Design and Analysis of Automotive HVAC Defrost Systems

2001-03-05
2001-01-0584
The overall vision of this project was to develop a new technology that will be an enabler to reduce design and development time of HVAC systems by an order of magnitude. The objective initially was to develop a parametric model of an automotive HVAC Windshield Defrost Duct coupled to a passenger compartment. It can be used early on in the design cycle for conducting coarse packaging studies by quickly exploring “what-if” design alternatives. In addition to the packaging studies, performance of these design scenarios can be quickly studied by undertaking CFD simulation and analyzing flow distribution and windshield melting patterns. The validated geometry and CFD models can also be used as knowledge building tools to create knowledge data warehouses or repositories for precious lessons learned.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

General Motors High Performance 4.3L V6 Engine

1992-02-01
920676
FIGURE 1 The 200 HP high performance 4.3L Vortec V6 engine has been developed to satisfy the need for a fuel efficient performance powerplant in the General Motors small truck platforms. Marketing requirements included strong low and mid range torque, relatively high specific power, smoothness and noise comparable to the best competitive six cylinder engines, excellent driveability, and a new technology image. Maintaining the 4.3L engine record of high reliability and customer satisfaction was an absolute requirement. Fuel economy and exhaust emission performance had to meet expected customer and legislated requirements in the mid 1990's.
Technical Paper

Fuel Economy and Performance Potential of a Five-Speed 4T60-E Starting Clutch Automatic Transmission Vehicle

2003-03-03
2003-01-0246
A wet multi-plate clutch, designated as the “starting clutch”, and a two-speed simple planetary gearset are used to replace the torque converter in the 4T60-E automatic transmission in order to study the potential improvement of vehicle fuel economy without sacrificing 0 - 60 mph acceleration performance. The starting clutch and the two-speed simple planetary gearset are designed to fit in the torque converter compartment. This paper describes the modified five-speed 4T60-E starting clutch automatic transmission system and provides vehicle test results to demonstrate its fuel economy and 0-60 mph performance potential.
Technical Paper

A Five-Speed Starting Clutch Automatic Transmission Vehicle

2003-03-03
2003-01-0248
A wet multi-plate clutch, designated as the “starting clutch”, is used to replace the torque converter in the automatic transmission in order to improve vehicle fuel economy. The transmission ratio spread must be increased to compensate for the torque multiplication of the torque converter and avoid penalizing the 0-60 mph acceleration performance. The main challenge of this concept is the control of the starting clutch to ensure acceptable vehicle drivability. This paper describes the system of a five-speed starting clutch automatic transmission vehicle and shows vehicle test results. Vehicle test data show that (i) the fuel economy benefit of the starting clutch is significant, and (ii) a starting clutch transmission can be designed to equal or better the 0-60 mph acceleration performance of a torque converter transmission by proper selection of the gear ratios.
Technical Paper

HVAC Plenum Design Analysis

1995-02-01
950113
The air passages of a plenum are investigated with Computational Fluid Dynamics (CFD) simulations. The objectives of the simulations are to examine the pressure drop between inlet (windshield base) and outlet (blower inlet), the water intrusion quantity into the HVAC module, and the velocity profile and flow rate at the outlet. An initial analysis relies on a two dimensional mesh around the chimney area. The velocity distribution at the outlet and the pressure drop (between inlet and outlet) are compared between a baseline design and a design with guide vanes. A more detailed analysis is conducted with a three dimensional mesh, to examine designs with different baffle/vane locations and inlet openings. Designs with baffles were found to reduce the water quantity entering the HVAC module. However, the pressure drop increased because the flow paths were choked.
Technical Paper

Investigation of Fluid Flow Through a Vane Pump Flow Control Valve

1995-04-01
951113
The recent development of a new vane-type pump for power steering applications involved paying special attention to the fluid flow dynamics within the pump casing, especially in the flow control or supercharge region, where excess pump fluid flow is diverted to the intake region. Durability testing of initial designs revealed the presence of cavitation damage to the pump casing in the supercharging region. Subsequent Computational Fluid Dynamics (CFD) analyses as well as experimental Flow Visualization studies aided in resolving the cavitation-damage problem. The purpose of this paper is to describe the processes used in the CFD analyses and flow visualization studies. A two-dimensional (2D) convergence study was conducted to determine the CFD meshing requirements across the small orifice at the intersection of the flow-control valve and the supercharge port. An iterative procedure was employed to determine the operating position of the flow-control valve.
Technical Paper

Dual Fan Alternator Design Analysis

1996-02-01
960272
Component operating temperatures affect both the reliability and performance of automotive alternators. It is desirable to keep the rectifier bridge and regulator temperatures below 175 C because of the semiconductors contained in this area. At temperatures greater than this, expected lifespans have been observed to decay exponentially [1]. The air flow field surrounding an alternator and component temperature fields were investigated with Computational Fluid Dynamics (CFD) simulations. The objectives of the simulations were to examine the velocity field for the flow passage and the temperature fields for the components. Design proposals have been made to improve the air flow and to reduce the operating temperature. An initial investigation was performed by setting an alternator in a test configuration and applying the appropriate heat generation for each component. The high temperatures in the alternator components occurred in the stator and the rectifier.
Technical Paper

Computational Flow Analysis of Brake Cooling

1997-02-24
971039
Air flow around the front brake assembly was computed using STAR-CD version 2.300, a commercial Computational Fluid Dynamics (CFD) code in order to explore the possibility of using this technique as a design tool. The primary objective in a brake corner assembly design is to maximize air cooling of the brake rotor. It is a very challenging task that requires experiments that are both expensive and time consuming in order to evaluate and optimize the various design possibilities. In this study, it is demonstrated that the design procedure can be shortened and made less expensive and be accurate using flow simulations. Accordingly, the air flow around the front brake assembly was computed for three different designs and for three different car speeds. A computational mesh was built using PROSTAR, the STAR-CD pre and post-processor. The three-dimensional mesh had almost 900,000 cells. All geometrical components were modelled.
Technical Paper

Exhaust Tips Design Analysis

1997-04-08
971518
The air passages in tailpipe end geometries are investigated with Computational Fluid Dynamics (CFD) simulations. The overall objective of the simulations is to select an optimum design which has a mimimum capacity for noise generation. This is accomplished by comparing pressure drops between inlet and outlet and by examining the turbulent kinetic energy levels in the flow domain. Two designs for the tailpipe end geometries were evaluated. It was found that turbulent kinetic energy levels and pressure drops were lowest in a single pipe design which had relatively smooth internal contours. We conclude that the present CFD approach can provide useful design information in a short time frame (a few weeks) for exhaust pipe tip geometries for reduced pressure drop and noise generation.
Technical Paper

Aeroacoustics of an Automotive A-Pillar Raingutter: A Numerical Study with the Ffowcs-Williams Hawkings Method

2005-05-16
2005-01-2492
A numerical simulation of the flow structure around an idealized automotive A-pillar rain-gutter and the sound radiated from it is reported. The idealized rain-gutter is an infinitesimally thin backward facing elbow mounted on a flat plate. It is kept in a virtual wind-tunnel with rectangular cross-section. The transient flow structure around the rain-gutter is described and time-averaged pressure distribution along the base plate is provided. Time-varying static pressure was recorded on every grid point on the base-plate as well as the rain-gutter surfaces and used to calculate sound pressure signal at a microphone held above the rain-gutter using the Ffowcs-Williams-Hawkings (FWH) integral method was used for calculating sound propagation. Both the transient flow simulation as well as the FWH sound calculation were performed using the commercial CFD code FLUENT6.1.22.
Technical Paper

Fuel Economy Trends and Catalytic Devices

1974-02-01
740594
In 1968, a major oil company cancelled its annual automobile economy run after sponsoring it for 18 consecutive years -presumably due to lack of interest from the public and the press. Almost coincident with that cancellation was the beginning of production automobile exhaust emission control on a national basis and a downward inflection in the historic trend of automobile fuel economy. In contrast, the past year has seen a major revival of interest, by both the public and the press, in fuel economy. In the next few weeks, the nation will be introduced to a new direction in automotive exhaust emission control which will profoundly affect the fuel economy trend. Perhaps equally, or even more important, the next few months are expected to see major national decisions on future automobile emission control which will likely have a significant influence on the direction taken by automobile fuel economy a few years hence.
Technical Paper

In-Use Fuel Economy of 1981 Passenger Cars

1982-02-01
820790
An owner survey was conducted to determine the owner-measured in-use fuel economy of 1981 model passenger cars. The in-use fuel economy has been compared to the Environmental Protection Agency's (EPA) fuel economy ratings. Data were analyzed to compare the influence of vehicle design parameters on the difference between in-use fuel economy and the EPA ratings. An analysis was also done to allow comparisons of in-use fuel economy from this survey with the results of a previously reported survey on 1980 models.
Technical Paper

Plasma Jet Ignition of Lean Mixtures

1975-02-01
750349
The development of a plasma jet ignition system is described on a 4-cyl, 140 in3 engine. Performance was evaluated on the basis of combustion flame photographs in a single-cylinder engine at 20/1 A/F dynamometer tests on a modified 4-cyl engine, and cold start emissions, fuel economy, and drivability in a vehicle at 19/1 air fuel ratio. In addition to adjustable engine variables such as air-fuel ratio and spark advance, system electrical and mechanical parameters were varied to improve combustion of lean mixtures. As examples, the air-fuel ratio range was 16-22/1, secondary ignition current was varied from 40 to 6000 mA, and plasma jet cavity and electrode geometry were optimized. It is shown that the plasma jet produces on ignition source which penetrates the mixture ahead of the initial flame front and reduces oxides of nitrogen emission, in comparison to a conventional production combustion chamber.
Technical Paper

Vehicle Underbody Thermal Simulation Using Computational Fluid Dynamics

1999-03-01
1999-01-0579
This study was initiated to evaluate the thermal characteristics of a vehicle underbody using math-based computational fluid dynamics (CFD) simulation based on 3-D configuration. Simulations without heat shields were carried out for different vehicle operating conditions which placed several areas at risk of exceeding their thermal design limits. Subsequently, simulations with several heat shield designs were performed. Results show that areas at risk without shields are well within thermal design limits when shielded. Part of the CFD simulation results were compared with experimental data, with reasonable correlation. The CFD approach can provide useful design information in a very short time frame.
X