Refine Your Search

Topic

Search Results

Journal Article

Transient Thermal Modeling of Power Train Components

2012-04-16
2012-01-0956
This paper discusses simplified lumped parameter thermal modeling of power train components. In particular, it discusses the tradeoff between model complexity and the ability to correlate the predicted temperatures and flow rates with measured data. The benefits and problems associated with using a three lumped mass model are explained and the value of this simpler model is promoted. The process for correlation and optimization using modern software tools is explained. Examples of models for engines and transmissions are illustrated along with their predictive abilities over typical driving cycles.
Technical Paper

Comparison of OEM Automatic Transmission Fluids in Industry Standard Tests

2007-10-29
2007-01-3987
As a result of raised awareness regarding the proliferation of individual OEM recommended ATFs, and discussion in various forums regarding the possibility of ‘universal’ service fill fluids, it was decided to study how divergent individual OEM requirements actually are by comparing the fluids performance in industry standard tests. A bench-mark study was carried out to compare the performance of various OEM automatic transmission fluids in selected industry standard tests. All of the fluids evaluated in the study are used by certain OEMs for both factory and service fill. The areas evaluated included friction durability, oxidation resistance, viscosity stability, aeration and foam control. The results of this study are discussed in this paper. Based on the results, one can conclude that each ATF is uniquely formulated to specific OEM requirements.
Technical Paper

Statistical Energy Analysis of Airborne and Structure-Borne Automobile Interior Noise

1997-05-20
971970
This paper describes the application of Statistical Energy Analysis (SEA) and Experimental SEA (ESEA) to calculating the transmission of air-borne and structure-borne noise in a mid-sized sedan. SEA can be applied rapidly in the early stages of vehicle design where the degree of geometric detail is relatively low. It is well suited to the analysis of multiple paths of vibrational energy flow from multiple sources into the passenger compartment at mid to high frequencies. However, the application of SEA is made difficult by the geometry of the vehicle's subsystems and joints. Experience with current unibody vehicles leads to distinct modeling strategies for the various frequency ranges in which airborne or structure-borne noise predominates. The theory and application of ESEA to structure-borne noise is discussed. ESEA yields loss factors and input powers which are combined with an analytical SEA model to yield a single hybrid model.
Technical Paper

The Chrysler “Quick Shift Neon” Automanual Transmission Project

1998-11-16
983082
Formula One motorsport competition, ever seeking increases in powertrain responsiveness and efficiency, has utilized electronically-shifted manual transmissions for nearly a decade. With the advent of this technology for passenger car usage ( for example the Magneti Marelli “Selespeed” system), new levels of powertrain electronic control become possible. At the same time, world-wide emission and fuel economy standards have driven powertrain designers to seek transmissions that are multi-faceted; able to offer manual transmission levels of driveline efficiency while simultaneously offering the ability to be automatically controlled. This paper will document a 1995-1996 Chrysler advanced powertrain concept study that culminated in a fully driveable, fully automatic, manual 5 speed transmission Neon coupe.
Technical Paper

General Motors Small Front Wheel Drive Six speed Automatic Transmission Family

2010-04-12
2010-01-0857
General Motors introduced a family of small front wheel drive six speed automatic transmissions for the 2008 model year. The family currently has two variants: 6T40 and 6T45, which cover a range of vehicles from small & compact cars to small SUVs and handle engines torque capacities up to 240 Nm Gas(280 Nm Diesel) & 315 Nm Gas (380 Nm Diesel) respectively. The 6T40/45 transmissions replace GM traditional four speed automatic wrap around transmissions 4T40/45. The wrap around transmissions have Torque Converter, Pump & Controls on the engine axis and the rest of the transmission content on the output axis. The 6T40/45 have an on-axis architecture with majority of the transmission content on the engine axis and final drive & differential on the output axis. The 4T40/45 have input chain transfer whereas the 6T40/45 have an output chain transfer.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Technical Paper

Automotive A/C System Integrated with Electrically-Controlled Variable Capacity Scroll Compressor and Fuzzy Logic Refrigerant Flow Management

2001-03-05
2001-01-0587
This paper describes the recent efforts on developing an automotive climate control system throughout integrating an electrically-controlled variable capacity scroll compressor with a fuzzy logic control-based refrigerant flow management. Applying electrically-controlled variable capacity compressor technology to climate control systems has a significant impact on improving vehicle fuel economy, achieving higher passenger comfort level, and extending air and refrigerant temperature controllability as well. In this regard, it is very important for automotive climate control engineers to layout a system-level temperature control strategy so that the operation of variable capacity compressor can be optimized through integrating the component control schemes into the system-level temperature control. Electronically controlled expansion devices have become widely available in automotive air conditioning (A/C) systems for the future vehicle applications(1, 2, 3 and 4).
Technical Paper

Squeak Studies on Material Pair Compatibility

2001-04-30
2001-01-1546
The more noise and vibration improvements are incorporated into our vehicles, the more customers notice squeaks and rattles (S&R). Customers increasingly perceive S&R as a direct indicator of vehicle build quality and durability. The high profile nature of S&R has the automotive industry striving to develop the understanding and technology of how to improve the S&R performance in the vehicle. Squeaks and itches make up a significant amount of Squeak and Rattle complaints found in today's vehicles. Squeaks and itches are the result of stick slip behavior between two interacting surfaces. Squeak itch behavior is dependent upon a large number of parameters including but not limited to: the material itself, temperature, humidity, normal load, system compliance, part geometry, velocity, surface roughness, wear, contaminants, etc. This paper will describe the analysis of sound data and friction data and the relationship between them.
Technical Paper

The Application of Direct Body Excitation Toward Developing a Full Vehicle Objective Squeak and Rattle Metric

2001-04-30
2001-01-1554
In order to engineer Squeak & Rattle (S&R) free vehicles it is essential to develop an objective measurement method to compare and correlate with customer satisfaction and subjective S&R assessments. Three methods for exciting S&Rs -type surfaces. Excitation methods evaluated were road tests over S&R surfaces, road simulators, and direct body excitation (DBE). The principle of DBE involves using electromagnetic shakers to induce controlled, road-measured vibration into the body, bypassing the tire patch and suspension. DBE is a promising technology for making objective measurements because it is extremely quiet (test equipment noise does not mask S&Rs), while meeting other project goals. While DBE is limited in exposing S&Rs caused by body twist and suspension noises, advantages include higher frequency energy owing to electro-dynamic shakers, continuous random excitation, lower capital cost, mobility, and safety.
Technical Paper

Advances in Complex Eigenvalue Analysis for Brake Noise

2001-04-30
2001-01-1603
Brake squeal has been analyzed by finite elements for some time. Among several methods, complex eigenvalue analysis is proving useful in the design process. It requires hardware verification and it falls into a simulation process. However, it is fast and it can provide guidance for resolving engineering problems. There are successes as well as frustrations in implementing this analysis tool. Its capability, robustness and reliability are closely examined in many companies. Generally, the low frequency squealing mechanism is a rotor axial direction mode that couples the pads, rotor, and other components; while higher frequency squeal mainly exhibits a rotor tangential mode. Design modifications such as selection of rotor design, insulator, chamfer, and lining materials are aimed specifically to cure these noise-generating mechanisms. In GM, complex eigenvalue analysis is used for brake noise analysis and noise reduction. Finite element models are validated with component modal testing.
Technical Paper

2002 Pontiac Montana Frequency Improvements Employing Structural Foam

2001-04-30
2001-01-1609
This paper documents a joint development process between General Motors and Dow Automotive to improve primary body structure frequencies on the GM family of midsize vans by utilizing cavity-filling structural foam. Optimum foam locations, foam quantity, and foam density within the body structure were determined by employing both math-based modeling and vehicle hardware testing techniques. Finite element analysis (FEA) simulations of the Body-In-White (BIW) and “trimmed body” were used to predict the global body structure modes and associated resonant frequencies with and without structural foam. The objective of the FEA activity was to quantify frequency improvements to the primary body structure modes of matchboxing, bending, and torsion when using structural foam. Comprehensive hardware testing on the vehicle was also executed to validate the frequency improvements observed in the FEA results.
Technical Paper

Adaptive Hydraulic Braking Traction Control for the 2003 Chevrolet Kodiak and GMC TopKick

2002-11-18
2002-01-3116
The development and application of a traction control Kodiak and GMC TopKick are explained. Most traction systems use engine management to enable traction control, while the adaptive braking system can provide traction assist for either gas or Diesel powered vehicles from 14,000 lbs. to 33,000 lbs. GVW. The performance driven criteria that established the design requirements and the development of a new product to meet these objectives are discussed. Both the vehicle manufacturer and the traction controller supplier provided these criteria. The basic ABS and traction control hydraulic schematics will be described as they apply to the vehicles. The results of the development program will be compared to the criteria used to establish the goals, and the benefits of the traction control system will be discussed.
Technical Paper

SEA in Vehicle Development Part I: Balancing of Path Contribution for Multiple Operating Conditions

2003-05-05
2003-01-1546
The application of Statistical Energy Analysis (SEA) to vehicle development is discussed, with a new technique to implement noise path analysis within a SEA model to enable efficient solution and optimization of acoustic trim. A whole vehicle Performance-Based SEA model is used, in which Sound Transmission Loss (STL) and acoustic absorption coefficient characterize subsystem performance. In such a model, the net contribution from each body panel/path, such as the floor, to a specific interior subsystem, such as the driver's head space, is extremely important for vehicle interior noise development. First, it helps to identify the critical path to root-cause potential problems. Second, it is necessary in order to perform balancing of path contributions. With current software, the power based noise contribution analysis is for direct paths/adjacent subsystems.
Technical Paper

Automotive Noise and Vibration Control Practices in the New Millennium

2003-05-05
2003-01-1589
The approaches used to develop an NVH package for a vehicle have changed dramatically over the last several years. New noise and vibration control strategies have been introduced, new materials have been developed, advanced testing techniques have been implemented, and sophisticated computer modeling has been applied. These approaches help design NVH solutions that are optimized for cost, performance, and weight. This paper explains the NVH practices available for use in designing vehicles for the new millennium.
Technical Paper

The Northstar DOHC V-8 Engine for Cadillac

1992-02-01
920671
General Motors Powertrain Division has developed a new V-8 engine for Cadillac vehicles in the 1990s. The Northstar engine incorporates the use of aluminum for both the cylinder block and head and other lightweight materials throughout. The valve train incorporates direct acting hydraulic lifters actuating the four valves per cylinder through dual overhead camshafts. The primary focus of the project has been to produce an engine of unquestioned reliability and exceptional value which is pleasing to the customer throughout the range of loads and speeds. The engine was designed with a light weight valve train, low valve overlap and moderate lift, resulting in a very pleasing combination of smooth idle and a broad range of power. The use of analytical methods early in the design stage enabled systems to be engineered to optimize reliability, pleaseability and value by reducing frictional losses, noise, and potential leak paths, while increasing efficiency and ease of manufacture.
Technical Paper

Design and Selection Factors for Automatic Transaxle Tapered Roller Bearings

1992-02-01
920609
Tapered roller bearings have proven successful in a number of high-volume automatic transaxle designs. Typically, tapered roller bearings are required to carry high loads generated by helical and hypoid gears. To meet the demands of a successful design, a number of factors must be considered in the selection and application of tapered roller bearings. This paper presents a discussion of these factors as well as results from Chrysler's transaxle testing. Selection of tapered roller bearings is based on the transmission duty cycle developed using load and speed histograms, gear data, size constraints, and life requirements. A bearing life analysis considering the total transaxle system is conducted using a sophisticated computer program. Various system effects are analyzed including the load/speed cycle, housing and shaft rigidity, lubrication, bearing setting, thermal effects, and bearing internal design.
Technical Paper

Development of a PEM Fuel Cell System for Vehicular Application

1992-08-01
921541
Allison Gas Turbine Division of General Motors is performing the first phase of a multiphase development project aimed at demonstrating an electric vehicle based on a proton exchange membrane (PEM) fuel cell. This work is sponsored by the Office of Transportation Technologies of the U.S. Department of Energy (DoE) through the DoE's Chicago Field Office (Contract No. DE-AC02-90CH10435). This work complements major efforts under way to produce electric vehicles for reducing pollution in key urban areas. Battery powered vehicles will initially satisfy niche markets where limited range vehicles can meet commuter needs. The PEM fuel cell/battery hybrid using methanol as fuel potentially offers an extremely attractive option to increasing the range, payload, and/or performance of battery powered vehicles.
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

2006-10-16
2006-01-3241
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

Experience in Sand Casting Aluminum MMC Prototype Components

1993-03-01
930179
Typical sand-casting techniques have been shown to be inappropriate in pouring particulate reinforced aluminum metal matrix composite (Al-MMC) castings. New gating/risering configurations were necessary to produce castings of acceptable soundness. Several automotive components, including brake rotors, cylinder liners and camshaft thrust plates, were prepared using special techniques. Initial durability test results of several Al-MMC prototype components are presented.
X