Refine Your Search

Topic

Author

Search Results

Technical Paper

Traditional and Electronic Solutions to Mitigate Electrified Vehicle Driveline Noises

2017-06-05
2017-01-1755
Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
Technical Paper

Supervisory Model Predictive Control of a Powertrain with a Continuously Variable Transmission

2018-04-03
2018-01-0860
This paper describes the design of a supervisory multivariable constrained Model Predictive Control (MPC) system for driver requested axle torque tracking with real-time fuel economy optimization that is scheduled for production by General Motors starting in 2018. The control system has been conceived and co-developed by General Motors and ODYS. The control approach consists of a set of linear MPC controllers scheduled in real-time based on powertrain operating conditions. For each MPC controller, a linear model is obtained by system identification with vehicle and dynamometer data. The supervisory MPC coordinates in real time desired Continuously Variable Transmission (CVT) ratio and desired engine torque to satisfy the system requirements, based on estimates of axle torque and engine fuel rate, by solving a constrained optimization problem at each sampling step. Each linear MPC controller is equipped with a Kalman filter to reconstruct the system state from available measurements.
Technical Paper

CFD Analysis of Oil/Gas Flow in Piston Ring-Pack

2011-04-12
2011-01-1406
The oil consumption and blow-by are complex phenomena that need to be minimized to meet the ever changing modern emission standards. Oil flows from the sump to the combustion chamber and the blow-by gases flow from the combustion chamber to the crank case. There are several piston rings on the piston, which form a ring-pack. The ring pack has to be efficiently designed to minimize the oil consumption and blow-by. Since it is difficult and extremely costly to conduct experiments on every series of engines to check for the blow-by and oil consumption, a CFD analysis can be performed on the ring pack to study the blow-by and oil-consumption characteristics. In the CFD analysis described here, the region considered is between the compression chamber and the skirt, between the piston (including the rings) and the cylinder liner. The 3D CFD analysis was conducted for the engine running conditions of 5000 rpm and load of 13.5 kPa, for a 2.4L gasoline engine.
Technical Paper

Analysis of Energy-Efficient Management of a Light-Duty Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2011-09-11
2011-24-0080
The paper presents the main results of a study on the simulation of energy efficient management of on-board electric and thermal systems for a medium-size passenger vehicle featuring a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. A set of advanced technologies has been considered on the basis of very aggressive fuel economy targets: base-engine downsizing and friction reduction, combustion optimization, active thermal management, enhanced aftertreatment and downspeeding. Mild-hybridization has also been added with the goal of supporting the downsized/downspeeded engine performance, performing energy recuperation during coasting phases and enabling smooth stop/start and acceleration. The simulation has implemented a dynamic response to the required velocity and manual gear shift profiles in order to reproduce real-driver behavior and has actuated an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM).
Technical Paper

Model Predictive Control of Turbocharged Gasoline Engines for Mass Production

2018-04-03
2018-01-0875
This paper describes the design of a multivariable, constrained Model Predictive Control (MPC) system for torque tracking in turbocharged gasoline engines scheduled for production by General Motors starting in calendar year 2018. The control system has been conceived and co-developed by General Motors and ODYS. The control approach consists of a set of linear MPC controllers scheduled in real time based on engine operating conditions. For each MPC controller, a linear model is obtained by system identification with data collected from engines. The control system coordinates throttle, wastegate, intake and exhaust cams in real time to track a desired engine torque profile, based on measurements and estimates of engine torque and intake manifold pressure.
Technical Paper

Learning Gasoline Direct Injector Dynamics Using Artificial Neural Networks

2018-04-03
2018-01-0863
In today’s race for improved fuel economy and lower emissions from gasoline engines, precise metering of delivered fuel is essential. Gasoline Direct Injection fuel systems provide the means for improved combustion efficiency through mixture preparation and better atomization. These improvements can be achieved from both increasing fuel pressure and using multiple injection events, which significantly reduce the required energizing time per injection, and in a number of cases, force the injector to operate at less than full stroke. When the injector operates in this condition, the influence of variation in injector dynamics account for a large percentage of the delivered fuel and require compensation to ensure accurate fuel delivery. Injector dynamics such as opening delay and closing time are influenced by operating conditions such as fuel pressure, energizing time, and temperature.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Harmonizing and Rationalizing Lightweighting within Fuel Efficiency Regulations Across NA, EU and China

2017-03-28
2017-01-1297
This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
Journal Article

General Motors’ New Reduced Scale Wind Tunnel Center

2017-03-28
2017-01-1534
The General Motors Reduced Scale Wind Tunnel Facility, which came into operation in the fall of 2015, is a new state-of-the-art scale model aerodynamic test facility that expands GM’s test capabilities. The new facility also increases GM’s aerodynamic testing through-put and provides the resources needed to achieve the growing demand for higher fuel economy requirements for next generation of vehicles. The wind tunnel was designed for a nominal model scale of 40%. The nozzle and test section were sized to keep wind tunnel interference effects to a minimum. Flow quality and other wind tunnel performance parameters are on par with or better than the latest industry standards. A 5-belt system with a long center belt and boundary layer suction and blowing system are used to model underbody flow conditions. An overhead probe traverse system is installed in the test section along with a model positioning robot used to move the model in an out of the test section.
Journal Article

Transmission Output Chain Spin Loss Study

2017-03-28
2017-01-1135
Transmission spin loss has significant influence on the vehicle fuel economy. Transmission output chain may contribute up to 10~15% of the total spin loss. However, the chain spin loss information is not well documented. An experimental study was carried out with several transmission output chains and simulated transmission environment in a testing box. The studies build the bases for the chain spin loss modeling and depicted the influences of the speed, the sprocket sizes, the oil levels, the viscosity, the temperatures and the baffle. The kriging method was employed for the parameter sensitivity study. A closed form of empirical model was developed. Good correlation was achieved.
Journal Article

The Effect of Outer Ring Distortion on Wheel Bearing Friction Torque

2017-09-17
2017-01-2521
Wheel bearing friction torque (“drag”) directly contributes to vehicle fuel economy and CO2 emissions. At the same time, one of the most important factors for long-term durability of wheel bearings is effective seal performance. Since these two factors are often in conflict, it is important to balance the desire for low friction with the need for optimal sealing. One factor that affects wheel bearing sealing performance is the distortion of the outer ring that occurs when the bearing is mounted to the steering knuckle with fasteners. Minimizing this distortion is not just important for sealing, however. This paper explores the relationship between the outer ring distortion and the resulting friction torque. A design of experiments (DOE) approach was used in order to study the effects of the fastening bolt torque, constant velocity joint (CVJ) fastening torque, and outer ring distortion on component-level drag.
Journal Article

Brake System Performance at Higher Mileage

2017-09-17
2017-01-2502
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
Journal Article

Toothed Chain CVT: Opportunities and Challenges

2017-03-14
2017-01-9677
A toothed chain continuously variable transmission concept is studied. By designing positive engagement at top overdrive ratio, we explored the potential to improve CVT mechanical efficiency. The low cost solution could improve fuel economy by 0.7% in FTP composite cycle. Preliminary multi-body dynamic simulation is also completed using VL-Motion to concept-proof the technical feasibility of disengagement and engagement. To address the noise issue resulted from abandoning the random pitch design in production chain, we proposed an alternate chain pitch sequence but more experimental data is required to validate the design.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

2018-04-03
2018-01-0379
Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Journal Article

Truck Utility & Functionality in the GM 2-Mode Hybrid

2010-04-12
2010-01-0826
The present production General Motors 2-Mode Hybrid system for full-size SUVs and pickup trucks integrates truck utility functions with a full hybrid system. The 2-mode hybrid system incorporates two electro-mechanical power-split operating modes with four fixed-gear ratios. The combination provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. The combination of two power-split modes reduces the amount of mechanical power that is converted to electric power for continuously variable transmission operation, meeting the utility required for SUVs and trucks. This paper describes how fuel economy functionality was blended with full-size truck utility functions. Truck functions described include: Manual Range Select, Cruise Control, 4WD-Low and continuous high load operation.
Technical Paper

An Innovative Hybrid Powertrain for Small and Medium Boats

2018-04-03
2018-01-0373
Hybridization is a mainstream technology for automobiles, and its application is rapidly expanding in other fields. Marine propulsion is one such field that could benefit from electrification of the powertrain. In particular, for boats to sail in enclosed waterways, such as harbors, channels, lagoons, a pure electric mode would be highly desirable. The main challenge to accomplish hybridization is the additional weight of the electric components, in particular the batteries. The goal of this project is to replace a conventional 4-stroke turbocharged Diesel engine with a hybrid powertrain, without any penalty in terms of weight, overall dimensions, fuel efficiency, and pollutant emissions. This can be achieved by developing a new generation of 2-Stroke Diesel engines, and coupling them to a state-of-the art electric system. For the thermal units, two alternative designs without active valve train are considered: opposed piston and loop scavenged engines.
Technical Paper

Development of General Motors’ eAssist Gen3 Propulsion System

2018-04-03
2018-01-0422
General Motors’ 3rd generation eAssist propulsion systems build upon the experience gained from the 2nd generation 115v system and the 1st generation 36v system. Extensive architectural studies were conducted to optimize the new eAssist system to maintain the performance and fuel economy gains of the 2nd generation 115v system while preserving passenger and cargo space, and reducing cost. Three diverse vehicle applications have been brought to production. They include two similar pickup trucks with 5.3 liter V8 engines and 8 speed transmissions, a 4-door passenger car with 2.5 liter 4 cylinder normally aspirated gasoline engine and a 6-speed automatic transmission, and a crossover SUV with a 2.0-liter turbocharged engine and 9 speed transmission. The key electrification components are a new water cooled induction motor/generator (MG), new water cooled power electronics module, and two major variants of 86v lithium ion battery packs.
Technical Paper

General Motors Hydra-Matic 9T50 Automatic Transaxle

2018-04-03
2018-01-0391
General Motors Global Propulsion Systems’ first nine-speed automatic transmission makes its debut in the 2017 Chevrolet Malibu, advancing a legacy of multispeed transmissions designed to optimize efficiency, performance and refinement. The Hydra-Matic 9T50 nine-speed is paired with a Ecotech 2.0L Turbo engine in the Malibu, contributing to an EPA estimated 33 mpg highway, a three-percent increase over the 2016 Malibu with an eight-speed automatic paired to the same engine. The 9T50 has a wider 7.6:1 overall ratio, which is the ratio between the first gear ratio and the top gear ratio, - compared to the six-speed’s 6.0:1 ratio. The 9T50 is fitted with a “deep” 4.69 first gear ratio for excellent off-the-line acceleration and a “tall” 0.62 top gear ratio for low-rpm highway cruising. That balance optimizes acceleration and fuel economy while reducing engine noise during cruising.
Journal Article

Influence of Discretization Schemes and LES Subgrid Models on Flow Field Predictions for a Motored Optical Engine

2018-04-03
2018-01-0185
Large-eddy simulations (LES) of a motoring single-cylinder engine with transparent combustion chamber (TCC-II) are carried out using a commercially available computer code, CONVERGE. Numerical predictions are compared with high-speed particle image velocimetry (PIV) measurements. Predictions of two spatial discretization schemes, namely, numerically stabilized central difference scheme (CDS) and fully upwind scheme are compared. Four different subgrid scale (SGS) models; a non-eddy viscosity dynamic structure turbulence (DST) model of Pomraning and Rutland, one-equation eddy-viscosity (1-Eqn) model of Menon et al., a zeroequation eddy-viscosity model of Vreman, and the zeroequation standard Smagorinsky model are employed on two different grid configurations. Additionally, simulations are also performed by deactivating the LES SGS models. It is found that the predictions when using the numerically stabilized CDS are significantly better than using the fully upwind scheme.
X