Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Journal Article

Truck Utility & Functionality in the GM 2-Mode Hybrid

2010-04-12
2010-01-0826
The present production General Motors 2-Mode Hybrid system for full-size SUVs and pickup trucks integrates truck utility functions with a full hybrid system. The 2-mode hybrid system incorporates two electro-mechanical power-split operating modes with four fixed-gear ratios. The combination provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. The combination of two power-split modes reduces the amount of mechanical power that is converted to electric power for continuously variable transmission operation, meeting the utility required for SUVs and trucks. This paper describes how fuel economy functionality was blended with full-size truck utility functions. Truck functions described include: Manual Range Select, Cruise Control, 4WD-Low and continuous high load operation.
Technical Paper

N&V Component Structural Integration and Mounted Component Durability Implications

2020-04-14
2020-01-1396
Exterior component integration presents competing performance challenges for balanced exterior styling, safety, ‘structural feel’ [1] and durability. Industry standard practices utilize noise and vibration mode maps and source-path-receiver [2] considerations for component mode frequency placement. This modal frequency placement has an influence on ‘structural feel’ and durability performance. Challenges have increased with additional styling content, geometric overhang from attachment points, component size and mass, and sensor modules. Base excitation at component attachment interfaces are increase due to relative positioning of the suspension and propulsion vehicle source inputs. These components might include headlamps, side mirrors, end gates, bumpers and fascia assemblies. Here, we establish basic expectations for the behavior of these systems, and ultimately consolidate existing rationales that are applied to these systems.
Journal Article

Brake System Performance at Higher Mileage

2017-09-17
2017-01-2502
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
Journal Article

Harmonizing and Rationalizing Lightweighting within Fuel Efficiency Regulations Across NA, EU and China

2017-03-28
2017-01-1297
This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
Technical Paper

Development of GM Allison 10-Speed Heavy Duty Transmission

2020-04-14
2020-01-0438
This paper describes the development of the GM Allison 10-Speed Heavy Duty (HD) Transmission. The trend of increased towing capacity and engine horsepower in the automotive heavy-duty truck segment has been steadily climbing for the past 10 years. The development of 10-Speed HD Transmission is designed to be best in class in for towing performance in the 2500/3500 series segment while optimizing fuel economy. The 10-Speed HD Transmission also gives the customers the option to order an integrated power take-off (PTO) unit that benefits downstream installation of utility accessories such as hydraulic pumps, generators, etc.
Technical Paper

Leveraging Real-World Driving Data for Design and Impact Evaluation of Energy Efficient Control Strategies

2020-04-14
2020-01-0585
Modeling and simulation are crucial in the development of advanced energy efficient control strategies. Utilizing real-world driving data as the underlying basis for control design and simulation lends veracity to projected real-world energy savings. Standardized drive cycles are limited in their utility for evaluating advanced driving strategies that utilize connectivity and on-vehicle sensing, primarily because they are typically intended for evaluating emissions and fuel economy under controlled conditions. Real-world driving data, because of its scale, is a useful representation of various road types, driving styles, and driving environments. The scale of real-world data also presents challenges in effectively using it in simulations. A fast and efficient simulation methodology is necessary to handle the large number of simulations performed for design analysis and impact evaluation of control strategies.
Technical Paper

Dynamics of Water Crossover in Fuel Cell and Application to Freeze Driveaway Reliability

2020-04-14
2020-01-0853
Reliable driveaway from frozen condition is one of the challenging design and control problem for fuel cell applications. Different approaches for warmup from frozen conditions have been developed by OEMs, e.g. low voltage inefficient operation, or use of coolant heaters. However, most methods result in water generation which risk icing and blocking the valves and rendering them nonfunctional till they thaw. One such valve is the anode drain valve which is needed to remove water that crosses over across the membrane to anode side. This work discusses characterization of dynamics of water crossover to anode balance of plant via step response experiments on full scale systems, and development of an online estimator to detect onset of anode water crossover via this online observer. In addition, detection via voltage dip-based feedback is also presented.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

2018-04-03
2018-01-0230
In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Journal Article

General Motors’ New Reduced Scale Wind Tunnel Center

2017-03-28
2017-01-1534
The General Motors Reduced Scale Wind Tunnel Facility, which came into operation in the fall of 2015, is a new state-of-the-art scale model aerodynamic test facility that expands GM’s test capabilities. The new facility also increases GM’s aerodynamic testing through-put and provides the resources needed to achieve the growing demand for higher fuel economy requirements for next generation of vehicles. The wind tunnel was designed for a nominal model scale of 40%. The nozzle and test section were sized to keep wind tunnel interference effects to a minimum. Flow quality and other wind tunnel performance parameters are on par with or better than the latest industry standards. A 5-belt system with a long center belt and boundary layer suction and blowing system are used to model underbody flow conditions. An overhead probe traverse system is installed in the test section along with a model positioning robot used to move the model in an out of the test section.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Journal Article

The Effect of Outer Ring Distortion on Wheel Bearing Friction Torque

2017-09-17
2017-01-2521
Wheel bearing friction torque (“drag”) directly contributes to vehicle fuel economy and CO2 emissions. At the same time, one of the most important factors for long-term durability of wheel bearings is effective seal performance. Since these two factors are often in conflict, it is important to balance the desire for low friction with the need for optimal sealing. One factor that affects wheel bearing sealing performance is the distortion of the outer ring that occurs when the bearing is mounted to the steering knuckle with fasteners. Minimizing this distortion is not just important for sealing, however. This paper explores the relationship between the outer ring distortion and the resulting friction torque. A design of experiments (DOE) approach was used in order to study the effects of the fastening bolt torque, constant velocity joint (CVJ) fastening torque, and outer ring distortion on component-level drag.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

HEV Architectures - Power Electronics Optimization through Collaboration Sub-topic: Inverter Design and Collaboration

2010-10-19
2010-01-2309
As the automotive industry quickly moves towards hybridized and electrified vehicles, the optimal integration of power electronics in these vehicles will have a significant impact not only on the cost, performance, reliability, and durability; but ultimately on customer acceptance and market success of these technologies. If properly executed with the right cost, performance, reliability and durability, then both the industry and the consumer will benefit. It is because of these interdependencies that the pace and scale of success, will hinge on effective collaboration. This collaboration will be built around the convergence of automotive and industrial technology. Where real time embedded controls mixes with high power and voltage levels. The industry has already seen several successful collaborations adapting power electronics to the automotive space in target vehicles.
Technical Paper

Comparison of Stochastic Pre-Ignition Behaviors on a Turbocharged Gasoline Engine with Various Fuels and Lubricants

2016-10-17
2016-01-2291
Stochastic pre-ignition (SPI) has been commonly observed in turbocharged spark-ignition direct-injection (SIDI) engines at low-speed and high-load conditions, which causes extremely high cylinder pressures that can damage an engine immediately or degrade the engine life. The compositions and properties of fuels and lubricants have shown a strong impact on SPI frequency. This study experimentally evaluated SPI behaviors on a 2.0-liter 4-cylinder turbocharged SIDI engine with China V market fuel and China fuel blended to US Tier II fuel specifications. China V market fuel showed significantly higher SPI frequency and severity than China blended US Tier II fuel, which was attributed to its lower volatility between 100 °C to 150 °C (or lower T60 to T90 in the distillation curve). Two different formulations of lubricant oils were also tested and their impact on SPI were compared.
Technical Paper

Utilizing a Tracked 3-Dimensional Acoustic Probe in the Development of an Automotive Front-of-Dash

2017-06-05
2017-01-1869
During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
X