Refine Your Search




Search Results

Technical Paper

Studies on Anti-Slip Regulation Technologies for AMT Vehicles

In order to improve the tractive ability, steering capability and directional stability, etc. of automated mechanical transmission (AMT) vehicles running on the wet and slippery road, the anti-slip regulation (ASR) technologies for AMT vehicles are developed. The significance of ASR for AMT vehicles is introduced; a road friction recognition method based on the deceleration of driving wheels is investigated; a fuzzy anti-slip control system based on adjustment of engine torque is developed and the corresponding experimental verification is conducted. The experimental results denote that the proposed method is effective to eliminate the excessive slip when the AMT vehicle travels on the low friction road.
Technical Paper

The Research on Fuzzy Logic Control Strategy of Synergic Electric System of Hybrid Electric Vehicle

Supercapacitor has the merits of low resistance and long lifecycle ability. When combined with battery, they can alleviate the burthen of battery, increase the battery's working efficiency and prolong its lifecycle. This paper introduces a control architecture based on balancing of SOC and algorithm based on fuzzy logic, Aiming at the two different cycles that have sufficient and insufficient energy that can be recovered from braking unlikely, this paper puts forward the methods of on-line adjusting fuzzy control parameters. Consequently, simulation was performed,and the results validate the effective adapting capacity of the control logic under different driving cycles.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

A Study of Calculation Method of Wheel Speed and Wheel Angular Acceleration Based on dSPACE Rapid Control Prototyping in Modern Automotive Control Systems

One of the key technologies of automotive active safety systems is to calculate the wheel speed and wheel angular acceleration or deceleration. Obtaining an accurate control quantity is the prerequisite for active safety systems no matter what control logics are used to realize the control function. This paper puts forward a new wheel speed processing algorithm. This method was simulated in MATLAB \ Simulink. Then it was tested in a certain type of vehicle of FAW by applying dSPACE RCP. It proves that this algorithm assures the precision at high and low speed and the real-time performance at low speed.
Technical Paper

CAN Communication Applying on the Performance Evaluating of Electronic Brake System for Commercial Vehicle

In the performance evaluating of Electronic Brake System, conventional test methods have some inconvenience in existence. For example, the fixing of pressure sensors and wheel speed sensors is restrained by the installation position, and the precision of measuring is prone to be affected by the environment conditions. Since Electronic Brake System is featured by CAN (Controller Area Network) communication, special testing instrument can be connected with CAN bus, monitoring signals transmitting on the bus. This paper outlines the results of the study performed to analyze the application of CAN communication in the way of performance evaluation of Electronic Braking System.
Technical Paper

Matching Optimum for Low HC and CO Emissions at Warm-up Phase in an LPG EFI Small SI Engine

Based on a 125cm3 single cylinder SI engine, the designated idle speed was controlled by adjusting of cycle ignition advance angle. By analyzing the effects of different idle speed and throttle open position on three way catalyst (TWC) light-off time and conversion efficiency of HC and CO emissions, combined with the corresponding total HC and CO emissions level, the optimum idle speed and throttle open position at engine's warm-up phase were found by the matching optimum. The present method for engine control strategy is helpful to optimize the warm-up phase emission levels in SI engine with LPG fuel.
Technical Paper

Improvements on the Start Performance of Diesel Engine by Fuel Control Strategy Optimization and Heating Measures

The incomplete combustion and misfire of diesel engine during starting result in unwanted white smoke. The histories of combustion and emission in different phases under different start conditions were studied in this paper. The optimization of the fuel injection control strategy under start conditions was performed. When the diesel engine is started under low temperature, the control strategy adapted to start the engine with a certain constant fuel mass injected per cycle, there may be misfire cycles in the initial period or in the transitional process, which is mainly caused by the mismatch between the fuel mass injected per cycle and the instantaneous engine speed. Therefore, an optimized control strategy was put forward, namely, the engine starts with high fuel mass injection in the first several cycles and then decreases step by step during the transitional period until it operates at idle condition. This strategy was validated to decrease significantly the misfire cycles.
Technical Paper

An Adaptive PID Controller with Neural Network Self-Tuning for Vehicle Lane Keeping System

Vehicle lane keeping system is becoming a new research focus of drive assistant system except adaptive cruise control system. As we all known, vehicle lateral dynamics show strong nonlinear and time-varying with the variety of longitudinal velocity, especially tire’s mechanics characteristic will change from linear characteristic under low speed to strong nonlinear under high speed. For this reason, the traditional PID controller and even self-tuning PID controller, which need to know a precise vehicle lateral dynamics model to adjust the control parameter, are too difficult to get enough accuracy and the ideal control quality. Based on neural network’s ability of self-learning, adaptive and approximate to any nonlinear function, an adaptive PID control algorithm with BP neural network self-tuning online was proposed for vehicle lane keeping.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

High Voltage Hybrid Battery Tray Design Optimization

Hybrid high voltage battery pack is not only heavy mass but also large in dimension. It interacts with the vehicle through the battery tray. Thus the battery tray is a critical element of the battery pack that interfaces between the battery and the vehicle, including the performances of safety/crash, NVH (modal), and durability. The tray is the largest and strongest structure in the battery pack holding the battery sections and other components including the battery disconnect unit (BDU) and other units that are not negligible in mass. This paper describes the mass optimization work done on one of the hybrid batteries using CAE simulation. This was a multidisciplinary optimization project, in which modal performance and fatigue damage were accessed through CAE analysis at both the battery pack level, and at the vehicle level.
Technical Paper

Development of SI-Engine based Extended MVEMs for use in Estimators for Engine Health Management

Mean Value Engine Models (MVEM) represent average behaviour of an engine over one or more thermodynamic cycles and have been designed for automotive control and diagnosis applications. However, most MVEMs are limited to the description of the dynamics of few engine sub-systems. The diagnostic capabilities of a vehicular engine health management (VEHM) system that uses such MVEMs are limited. In this paper, the process of deriving an MVEM for an entire engine system from an instantaneous within-cycle crank-angle model (WCCM) is described. This is expected to be more beneficial for fault diagnosis in VEHMs since such MVEMs in the context of state observers, can be used to detect a broader range of faults and also generate a larger number of fault signatures for better fault detection and isolation (FDI). Extended Kalman Filter (EKF) based estimators are developed that use this MVEM for state estimation.
Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Technical Paper

Advancements in Hardware-in-the-Loop Technology in Support of Complex Integration Testing of Embedded System Software

Automotive technology is rapidly changing with electrification of vehicles, driver assistance systems, advanced safety systems etc. This advancement in technology is making the task of validation and verification of embedded software complex and challenging. In addition to the component testing, integration testing imposes even tougher requirements for software testing. To meet these challenges dSPACE is continuously evolving the Hardware-In-the-Loop (HIL) technology to provide a systematic way to manage this task. The paper presents developments in the HIL hardware technology with latest quad-core processors, FPGA based I/O technology and communication bus systems such as Flexray. Also presented are developments of the software components such as advanced user interfaces, GPS information integration, real-time testing and simulation models. This paper provides a real-world example of implication of integration testing on HIL environment for Chassis Controls.
Technical Paper

Investigation of Transient Performance for Gasoline Engine with Electronic Throttle Control System

The calibration of the electronic throttle unit and the pedal unit was made. Based on it, an electronic control system of electronic throttle was designed and installed on a 4G18 engine. Engine experiment was made especially for its transient working condition. Engine performance at transient working condition was investigated. The test results indicate that the optimum way of opening the throttle valve is to open the throttle valve to the target location at once, when 4G18 engine transit from 2000r/min to 3000r/min without load. And its optimum calibration for the electronic throttle control unit is made based on the test results. The control system, the experiment, the test results and the calibration were introduced in this paper.
Technical Paper

Impact Theory Based Total Cylinder Sampling System and its Application

A novel non-destroy repeatable-use impact theory based total cylinder sampling system has been established. This system is mainly composed of a knocking body and a sampling valve. The knocking body impacts the sampling valve with certain velocity resulting in huge force to open the sampling valve and most of the in-cylinder gas has been dumped to one sampling bag for after-treatment. The feasibility and sampling response characteristics of this impact theory based total cylinder sampling system were investigated by engine bench testing. Within 0 to 35°CA ATDC (Crank Angle After Top Dead Center) sample timing 50 percent to 80 percent of in-cylinder mass would be sampled, which was a little less compared with the traditional system. The half decay period of pressure drop was 10 to 20 degrees crank angle within 0 to 60°CA ATDC sample timing, which was about 2-3 times of the traditional system.
Technical Paper

Vehicle Occupant Posture Classification System using Seat Pressure Sensor for Intelligent Airbag

In the intelligent airbag system, the detection accuracy of occupant position is the precondition and plays a vital role to control airbag detonation time and inflated strength during the crash. Through accurately analyzing the seat surface pressure distributions of different occupant sitting position and types, an occupant position recognition approach which purely uses occupant pressure distribution information measured by seat pressure sensors is presented with the method of Support Vector Machine. In the end, the distribution samples with different occupant sitting position and types are used to train and test the recognition approach, and the good validity and accuracy are shown in the experiments.
Technical Paper

Research on a Neural Network Model Based Automatic Shift Schedule with Dynamic 3-Parameters

To reach the goal of optimal performance match between engine and transmission, the dynamic characteristics of engine should be taken into consideration. In the paper, the dynamic torque and fuel consumption models of engine, described by a multi-layers feed forward neural network, were established. Based on that, the methods used to calculate the optimal dynamic and economical shift schedules with dynamic 3-parameters were put forward. The shift schedule with dynamic 3-parameters based on neural network model is proven to be superior to the shift schedule with only 2-parameters in both dynamic performance and fuel economy by the test.
Technical Paper

Effects of Fuel Injection Characteristics on Heat Release and Emissions in a DI Diesel Engine Operated on DME

In this study, an experimental investigation was conducted using a direct injection single-cylinder diesel engine equipped with a test common rail fuel injection system to clarify how dimethyl ether (DME) injection characteristics affect the heat release and exhaust emissions. For that purpose the common rail fuel injection system (injection pressure: 15 MPa) and injection nozzle (0.55 × 5-holes, 0.70 × 3-holes, same total holes area) have been used for the test. First, to characterize the effect of DME physical properties on the macroscopic spray behavior: injection quantity, injection rate, penetration, cone angle, volume were measured using high-pressure injection chamber (pressure: 4MPa). In order to clarify effects of the injection process on HC, CO, and NOx emissions, as well as the rate of heat release were investigated by single-cylinder engine test. The effects of the injection rate and swirl ratio on exhaust emissions and heat release were also investigated.
Technical Paper

Mode Transition Dynamic Control for Dual-Motor Hybrid Driving System

Coordinated control of mode transition is an important part of the multi-mode hybrid vehicles' control strategy, combined with a vehicle torque distribution strategy to realize an optimal working condition of the power sources, as well as achieve smooth mode switching. This paper builds hybrid electric vehicle driveline dynamics model and depth analyzes drive mode transition process, coordinated control methods were provided to solve three types of mode switching, neural network algorithm was provided to estimate the engine torque. The results show that coordinated control can reduce torque fluctuations and decrease jerk during the transition of different modes to improve the vehicle drivability.
Technical Paper

Development of Production Control Algorithms for Hybrid Electric Vehicles by Using System Simulation: Technology Leadership Brief

In an earlier paper, the authors described how Model-Based System Engineering could be utilized to provide a virtual Hardware-in-the-Loop simulation capability, which creates a framework for the development of virtual ECU software by providing a platform upon which embedded control algorithms may be developed, tested, updated, and validated. The development of virtual ECU software is increasingly valuable in automotive control system engineering because vehicle systems are becoming more complex and tightly integrated, which requires that interactions between subsystems be evaluated during the design process. Variational analysis and robustness studies are also important and become more difficult to perform with real hardware as system complexity increases. The methodology described in this paper permits algorithm development to be performed prior to the availability of vehicle and control system hardware by providing what is essentially a virtual integration vehicle.