Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Scavenger and Lead Poisoning of Automotive Oxidation Catalysts

1974-02-01
741062
The deactivation of noble metal oxidation catalysts by lead and halide lead scavengers was studied in engine and laboratory experiments. The halide scavengers caused rapid but completely reversible inhibition of the catalyst activity, which existed only as long as the halide was present. The effects of catalyst temperature and noble metal concentration indicated that the halide scavenger dissociated upon adsorption on the catalyst. Palladium and platinum-palladium catalysts were more susceptible to halide inhibition than were platinum catalysts. Lead alone or lead plus scavengers produced a persistent poisoning of the catalyst. Lead poisoning effects were increased by increased catalyst temperatures and fuel lead content. Tests with scavengers only, conducted in an engine previously operated on leaded fuel, showed that lead was transported to the catalyst causing lead poisoning even in the absence of lead in the fuel.
Technical Paper

Time-Resolved Measurement of Vehicle Sulfate and Methane Emissions with Tunable Diode lasers

1980-02-01
800510
A new analytical method, absorption of tunable diode laser radiation, can detect small concentrations of gases with fast response. This technique has been applied to the detection of vehicle sulfate emissions in the form of sulfuric acid (H2SO4) vapor. Previously available methods for sulfate analysis required collecting samples for 10 min. or more. Our laser system has a response time of 2.4 s. This allowed tracking the sulfate emissions of a vehicle during a Highway Fuel Economy Test. The data suggests that catalyst temperature is the major parameter controlling sulfate emissions and that storage and release of sulfur occurs at low and high catalyst temperatures, respectively. The same method detected methane during both the Highway Fuel Economy Test and the Federal Test Procedure. It identified the conditions, and corresponding concentrations, for high methane emissions. A qualitative comparison with total hydrocarbon emissions uncovered significant differences during accelerations.
Technical Paper

Visualization of Automotive Catalytic Converter Internal Flows

1986-10-01
861554
Internal flow details of a prototype dual-bed monolith converter were determined in water-flow visualization tests run on a full-scale transparent acrylic model. Using steadily flowing water seeded with a small quantity of tracer particles, fluid motion within transparent sections of the flow model was deduced from particle pathlines illuminated with a thin plane of laser light. Flow in the inlet transition separated from the diffuser walls and impinged as a constant-diameter jet on the leading face of the first monolith. Velocity profiles from streak photographs showed that the level of flow maldistribution in the first monolith was a function of Reynolds number. Secondary air injected between the monoliths was uniformly distributed along the major axis of the converter under all flow conditions. At dilution ratios of 16% or more the jet penetration was adequate to provide a uniform, well-mixed diluent distribution.
Technical Paper

A Two-Stage Heat-Release Model for Diesel Engines

1986-09-01
861272
A two-stage heat-release model was developed and applied to both a divided-chamber and an open-chamber diesel engine to determine the fuel burning rates and product temperatures from measured cylinder pressure-time profiles. Measured NO emission levels for several engine operating conditions were used to select the equivalence ratios of the two stages. Combustion in the first stage was taken to occur at a stoichiometric air-fuel ratio, while second-stage combustion was considered to occur at an equivalence ratio below the cylinder-averaged equivalence ratio. An empirical fit for the equivalence ratio of the second stage was determined. Good agreement between the results of this model and the corresponding single-stage model was obtained for heat-release and heat-transfer histories. The computed combustion temperatures for the rich stage were found to be consistently higher (7 to 22% on an absolute scale) than published flame-temperature measurements.
X