Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Methodology for Virtual Analysis of the Dynamic Behavior of Parking Brake Cable Attached to Leaf Spring Suspension

2017-11-07
2017-36-0128
Through computational dynamic simulations is possible to achieve high reliability index in the development of automotive components, thus reducing the time and component cost can generate significant levels of competitiveness and quality. This work suggests the validation of a methodology for simulation, able to predict and quantify the best design of the parking brake cable that although it is flexible, has in its structure composite elements of different mechanical properties. Known difficulty of mathematically predict nonlinear relationships deformation under forces and moments effect was first established, studies based on experimental measurements serve as input parameters for simulating the dynamic behavior of the flexible cable. With the aid of motion making use of NX9 CAD software, it was prepared the dynamic movement that the leaf spring suspension system does.
Technical Paper

Vibration Absorber Application, Case Study: Mid-Size Truck Steering Wheel Vibration

2017-11-07
2017-36-0125
In this paper an alternative engineering solution to control vehicle steering wheel vibration is presented. The strategy is focused on the implementation of an effective tuned vibration absorber which also complies with time frame and costs requisites. The vibration levels in this case study are enhanced due resonances in the chassis frame and steering column. The tuned mass damper is basically a suspended mass attached on a vulcanized rubber body, aiming for the customer benefits; this solution can be classified as low cost as well low complexity for implementation. In this case study, a mid-size truck was used as a physical hardware and the data were collected through accelerometers on the steering wheel and other critical components. As a control factor, different tunings on different parts were applied to optimize the auxiliary system performance and robustness.
Technical Paper

The Use of Piezoelectric Resonators to Enhance Sound Insulation in a Vehicle Panel

2012-11-25
2012-36-0613
The control of noise and vibrations using conventional damping materials is typically associated to mass penalties in a vehicle. A lightweight alternative employs piezoceramic materials connected in series to a resistor and an inductor (R-L circuit) to perform as mechanical vibration absorber, called piezoelectric resonator. In this paper, piezoelectric resonators are designed to attenuate vibration in a vehicle panel. The choice of design parameters, such as correct placement for the piezoelectric patches and the optimal electrical circuit values, is assisted by Finite Element simulation (FE) and theoretical analysis. Measurements of Sound Transmission Loss (STL) and modal analyses are conducted to demonstrate the efficiency of the proposed technique when compared to a conventional damping material.
Technical Paper

Carbon Canisters and the Evaporative Emission Level Tendency in Brazil for Passenger Cars

2015-09-22
2015-36-0319
Carbon canisters are used in gasoline passenger vehicle and light duty truck applications. The component is part of the vehicle emission control system. Activated carbon (also known as charcoal) traps hydrocarbon vapors from the fuel tank and vapors created during the fuel tank refueling and venting events. Canister design, charcoal type and performance have been driven by evaporative emission regulations around the world, and evaporative emission requirements have enhanced through the years. The trend of evaporative emission requirements in Brazil indicates the use of improved carbon canisters in the near future. Carbon canisters are needed to store hydrocarbons that would otherwise pollute the environment. Wood based activated carbon is manufactured from sawdust, which is a renewable resource. The result is a healthier earth on which we live. Figure 1 illustrates the activation process of carbon. Figure 1 Activation process of carbon.
Technical Paper

Design and Test of an Articulated Rear Guard able to Prevent Car Underride

1997-12-31
973106
Rear underride crashes are responsible for thousands of deaths every year in Brazil. To support the fight against this calamity, it was design and tested an articulated guard able to avoid car underride. Because of its articulation capability, this guard can be placed as low as necessary without impairing the truck maneuverability. Crash tests were carried out with the new guard and with another one constructed according to Brazilian standards. The articulated guard was able to avoid underride of a vehicle GM Corsa colliding at 50 km/h in offset of 50%. The other guard could not avoid underride under the same test conditions.
X