Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Drive Cycle Analysis of Load Control Strategies for Methanol Fuelled ICE Vehicle

2012-09-10
2012-01-1606
The use of methanol as spark-ignition engine fuel can help to increase energy security and offers the prospect of carbon neutral transport. Methanol's properties enable considerable improvements in engine performance, efficiency and CO2 emissions compared to gasoline operation. SAE paper 2012-01-1283 showed that both flex-fuel and dedicated methanol engines can benefit from an operating strategy employing exhaust gas recirculation (EGR) to control the load while leaving the throttle wide open (WOT). Compared to throttled stoichiometric operation, this reduces pumping work, cooling losses, dissociation and engine-out NOx. The current paper presents follow-up work to determine to what extent these advantages still stand over an entire drive cycle. The average vehicle efficiency, overall CO2 and NOx emissions from a flexible fuel vehicle completing a drive cycle on gasoline and methanol were evaluated.
Technical Paper

Downsizing Potential of Methanol Fueled DISI Engine with Variable Valve Timing and Boost Control

2018-04-03
2018-01-0918
Methanol is gaining traction in some regions, e.g. for road transportation in China and for marine transportation in Europe. In this research, the possibility for achieving higher power output and higher efficiency with methanol, compared to gasoline, is investigated and the influence of several engine settings, such as valve timing and intake boost control, is studied. At wide open throttle (WOT), engine speed of 1650 rpm, the brake mean effective pressure (BMEP) of the methanol-fueled engine is higher than on gasoline, by around 1.8 bar. The maximum BMEP is further increased when positive valve overlap and higher intake boost pressure are applied. Thanks to a lower residual gas fraction, and a richer in-cylinder mixture with positive valve overlap period, the engine BMEP improves by a further 2.6 bar. Because of higher volumetric efficiency with a boosted intake air, the engine BMEP enhances with 4.7 bar.
Technical Paper

Combustion Characterization of Methanol in a Lean Burn Direct Injection Spark Ignition (DISI) Engine

2019-04-02
2019-01-0566
Lean operation is a promising approach to increase the engine efficiency. One of the main challenges for lean-burn technology is the combustion instability. Using a high laminar burning velocity fuel such as methanol might solve that problem. The potential of lean-burn limit extension with methanol was investigated through a comparison with conventional gasoline. In this work, a direct injection turbocharged SI engine was operated at wide open throttle (WOT), with the load controlled by a lean-burn strategy. The amount of fuel was decreased (or lambda increased) until the combustion became unstable. For methanol, the lambda limit was about 1.5, higher than the lambda limit for gasoline which was only about 1.2. The brake thermal efficiency for methanol increased as lambda increased and reached its peak at ~41% in a lambda range of 1.2-1.4. Then, the efficiency decreased as lambda increased.
Technical Paper

A Critical Review of Experimental Research on Hydrogen Fueled SI Engines

2006-04-03
2006-01-0430
The literature on hydrogen fueled internal combustion engines is surprisingly extensive and papers have been published continuously from the 1930's up to the present day. Ghent University has been working on hydrogen engines for more than a decade. A summary of the most important findings, resulting from a literature study and the experimental work at Ghent University, is given in the present paper, to clarify some contradictory claims and ultimately to provide a comprehensive overview of the design features in which a dedicated hydrogen engine differs from traditionally fueled engines. Topics that are discussed include abnormal combustion (backfire, pre-ignition and knock), mixture formation techniques (carbureted, port injected, direct injection) and load control strategies (power output versus NOx trade-off).
Technical Paper

Combustion Studies for PFI Hydrogen IC Engines

2007-08-05
2007-01-3610
Interest in alternative fuels is motivated by concerns for greenhouse gas accumulation, air quality, security of energy supply and of course the non-stop increasing crude oil and natural gas prices. Hydrogen usage can be a solution for these problems. Hydrogen plays the role of an energy carrier that has two major advantages: it can be generated from many sources and it is very clean in its use. One end-use technology that can handle hydrogen is the well-known internal combustion engine (ICE). However, before this technology can be put to use, it needs to be able to compete with conventionally fuelled power units. Particularly in terms of specific power output and NOX emissions, development work needs to be done. In the work described in this paper the main focus is on the combustion strategies for high efficiency and low NOx emissions. A comparison is made between lean burn and EGR (exhaust gas recirculation) strategies.
Technical Paper

Reducing Engine-Out Emissions for Medium High Speed Diesel Engines: Influence of Injection Parameters

2009-04-20
2009-01-1437
In 2004 the European Parliament ratified the Euro III and IV standards limiting the pollutant emission of, among others, rail and marine diesel engines. In these sectors, it is particularly important to keep any fuel consumption penalty, when reducing emissions, to a strict minimum. Furthermore, exhaust gas after treatment is mostly avoided for cost reasons. Thus, manufacturers are looking to pretreatment of fuels, alternative fuels, and limiting engine-out emissions as ways to attain the required emission levels. This paper discusses the experimental work done on a 1324 kW, 1000 rpm six cylinder marine diesel engine equipped with mechanical unit injectors. The aim was to determine the influence of compression ratio and fuel injection parameters on engine-out emissions, with emphasis on NOx emissions. A range of fuel injection parameters were examined, varying the start of injection, pump plunger diameter, injection pressure, and injector nozzle geometry.
Technical Paper

Experimental Investigation of a DISI Production Engine Fuelled with Methanol, Ethanol, Butanol and ISO-Stoichiometric Alcohol Blends

2015-04-14
2015-01-0768
Stricter CO2 and emissions regulations are pushing spark ignition engines more and more towards downsizing, enabled through direct injection and turbocharging. The advantages which come with direct injection, such as increased charge density and an elevated knock resistance, are even more pronounced when using low carbon number alcohols instead of gasoline. This is mainly due to the higher heat of vaporization and the lower air-to-fuel ratio of light alcohols such as methanol, ethanol and butanol. These alcohols are also attractive alternatives to gasoline because they can be produced from renewable resources. Because they are liquid, they can be easily stored in a vehicle. In this respect, the performance and engine-out emissions (NOx, CO, HC and PM) of methanol, ethanol and butanol were examined on a 4 cylinder 2.4 DI production engine and are compared with those on neat gasoline.
Journal Article

Effects of Supercharging, EGR and Variable Valve Timing on Power and Emissions of Hydrogen Internal Combustion Engines

2008-04-14
2008-01-1033
Hydrogen-fueled internal combustion engines equipped with port fuel injection offer a cheap alternative to fuel cells and can be run in bi-fuel operation side-stepping the chicken and egg problem of availability of hydrogen fueling station versus hydrogen vehicle. Hydrogen engines with external mixture formation have a significantly lower power output than gasoline engines. The main causes are the lower volumetric energy density of the externally formed hydrogen-air mixture and the occurrence of abnormal combustion phenomena (mainly backfire). Two engine test benches were used to investigate different means of compensating for this power loss, while keeping oxides of nitrogen (NOx) emissions limited. A single cylinder research engine was used to study the effects of supercharging, combined with exhaust gas recirculation (EGR). Supercharging the engine results in an increase in power output.
Technical Paper

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

2019-09-09
2019-24-0098
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel.
Technical Paper

Spray Parameter Comparison between Diesel and Vegetable Oils for Non-Evaporating Conditions

2012-04-16
2012-01-0461
The internal combustion engine with compression ignition is still the most important power plant for heavy duty transport, railway transport, marine applications and generator sets. Fuel cost and emission regulations drive manufacturers to switch to alternative fuels. The understanding and prediction of these fuels in the spray and combustion process will be very important for these issues. In the past, lot of research was done for conventional diesel fuel by optically analyzing both spray and combustion. However comparison between different groups is difficult since qualitative results and accuracies are depending in the used definitions and methods. The goal of present research is to verify the behavior pure oils compared to more standard fuels while paying lot of attention to the interpretation of the measurement results.
Technical Paper

Experimental Evaluation of Lean-burn and EGR as Load Control Strategies for Methanol Engines

2012-04-16
2012-01-1283
The use of light alcohols as SI engine fuels can help to increase energy security and offer the prospect of carbon neutral transport. These fuels enable improvements in engine performance and efficiency as several investigations have demonstrated. Further improvements in efficiency can be expected when switching from throttled stoichiometric operation to strategies using mixture richness or exhaust gas recirculation (EGR) to control load while maintaining wide open throttle (WOT). In this work the viability of throttleless load control using EGR (WOT EGR) or mixture richness (WOT lean burn) as operating strategies for methanol engines was experimentally verified. Experiments performed on a single-cylinder engine confirmed that the EGR dilution and lean burn limit of methanol are significantly higher than for gasoline. On methanol, both alternative load control strategies enable relative indicated efficiency improvements of about 5% compared to throttled stoichiometric operation.
Technical Paper

Development of Laminar Burning Velocity Correlation for the Simulation of Methanol Fueled SI Engines Operated with Onboard Fuel Reformer

2017-03-28
2017-01-0539
Methanol fueled spark ignition (SI) engines have the potential for very high efficiency using an advanced heat recovery system for fuel reforming. In order to allow simulation of such an engine system, several sub-models are needed. This paper reports the development of two laminar burning velocity correlations, corresponding to two reforming concepts, one in which the reformer uses water from an extra tank to produce hydrogen rich gas (syngas) and another that employs the water vapor in the exhaust gas recirculation (EGR) stream to produce reformed-EGR (R-EGR). This work uses a one-dimensional (1D) flame simulation tool with a comprehensive chemical kinetic mechanism to predict the laminar burning velocities of methanol/syngas blends and correlate it. The syngas is a mixture of H2/CO/CO2 with a CO selectivity of 6.5% to simulate the methanol steam reforming products over a Cu-Mn/Al catalyst.
Technical Paper

Design of a Fast Responding Start-Up Mechanism for Bi-Propellant Fueled Engine for Miniature UAV Applications

2013-09-17
2013-01-2305
In this work a new design of a liquid fuelled combustion engine is proposed for small and light weight unmanned air vehicles (<10kg and 15-200N thrust). Ethanol and gasoline were selected as the potential fuels while pressurized air and hydrogen peroxide were used as the oxidizer. The engine combines features of both a common rocket and turbojet engine. The main features of the engine are the restart ability during flight, low cost, easy manufacturability, light weight, long operation time and high durability. The main difficulties that come along with this engine are the need for proper engine cooling (long term operation) and start-up ability at atmospheric conditions. The low temperatures and injection pressures are not favorable for the fuel atomization and ignition. The paper focuses on the design on low pressure injectors and a start-up mechanism for micro UAV's without the use of a large amount of additional fueling circuits or components.
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

2012-04-16
2012-01-1209
Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
Technical Paper

Using Vegetable Oils and Animal Fats in Diesel Engines: Chemical Analyses and Engine Tests

2009-04-20
2009-01-0493
There is a growing consensus that there will not be a single alternative to fossil fuels, but rather different fuels, fuel feedstocks, engine types and operating strategies. For stationary diesel engines, straight vegetable oils are an interesting alternative to fossil diesel, because of their potential for lower life cycle greenhouse gas emissions. Using animal fats is also compelling, as it does not imply the cultivation of oil-bearing seeds and related emissions, not to mention the ‘food versus fuel’ debate. The aim of the present work is to correlate engine performance and durability with the properties (composition) of these alternative fuels, to provide a basis from which standards can be formulated for the properties of oils and fats to be used as engine fuel. Tests on different oils and fats are reported.
Technical Paper

Performance and Emissions of a SI Engine using Methanol-Water Blends

2013-04-08
2013-01-1319
Using liquid alcohols, such as methanol and ethanol, in spark-ignition engines is a promising approach to decarbonize transport and secure domestic energy supply. Methanol and ethanol are compatible with the existing fuelling and distribution infrastructure and are easily stored in a vehicle. They can be used in internal combustion engines with only minor adjustments and have the potential to increase the efficiency and decrease noxious emissions compared to gasoline engines. In addition, methanol can be synthesized from a wide variety of sources, including renewably produced hydrogen in combination with atmospheric CO₂. Presently, during the production of ethanol or methanol a dehydration step is always applied. This step accounts for a significant part of the entire production process' energy consumption and thus, from an economical point of view, methanol and ethanol could become more interesting alternative fuels if the costs related with dehydration could be reduced.
Technical Paper

Development and Validation of a Knock Prediction Model for Methanol-Fuelled SI Engines

2013-04-08
2013-01-1312
Knock is one of the main factors limiting the efficiency of spark-ignition engines. The introduction of alternative fuels with elevated knock resistance could help to mitigate knock concerns. Alcohols are prime candidate fuels and a model that can accurately predict their autoignition behavior under varying engine operating conditions would be of great value to engine designers. The current work aims to develop such a model for neat methanol. First, an autoignition delay time correlation is developed based on chemical kinetics calculations. Subsequently, this correlation is used in a knock integral model that is implemented in a two-zone engine code. The predictive performance of the resulting model is validated through comparison against experimental measurements on a CFR engine for a range of compression ratios, loads, ignition timings and equivalence ratios.
X