Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Big Data-Based Driving Pattern Clustering and Evaluation in Combination with Driving Circumstances

2018-04-03
2018-01-1087
Car driver’s behavior and its influence on driving characteristics play an increasing role in the development of modern vehicles, e.g. in view of efficient powertrain control and implementation of driving assistance functions. In addition, knowledge about actual driving style can provide feedback to the driver and support efficient driving or even safety-related measures. Driving patterns are caused not only by the driver, but also influenced by road characteristics, environmental boundary conditions and other traffic participants. Thus, it is necessary to take the driving circumstances into account, when driving patterns are studied. This work proposes a methodology to cluster and evaluate driving patterns under consideration of vehicle-related parameters (e.g. acceleration and jerk) in combination with additional influencing factors, e.g. road style and inclination. Firstly, segmentation of the trip in distance series is performed to generate micro cycles.
Technical Paper

Robot-Based Fast Charging of Electric Vehicles

2019-04-02
2019-01-0869
Automated, conductive charging systems enable both, the transmission of high charging power for long electric driving distances as well as comfortable and safe charging processes. Especially by the use of heavy and unhandy cables for fast charging, these systems offer user friendly vehicle charging - in particularly in combination with autonomously driving and parking vehicles. This paper deals with the definition of requirements for automated conductive charging stations with standard charging connectors and vehicle inlets and the development of a fully-automated charging robot for electric and plug-in hybrid vehicles. In cooperation with the project partners BMW AG, MAGNA Steyr Engineering, KEBA AG and the Institute of Automotive Engineering at Graz University of Technology, the development and implementation of the prototype took place in the course of a governmental funded research project titled “Comfortable Mobility by Technology Integration (KoMoT)”.
Technical Paper

The Potential of New Vehicle Concepts For Transport Optimization and GHG Emission Reduction in Urban Areas

2014-04-01
2014-01-1005
Increasing urbanization, the growing degree of motorization and traffic performance in urban areas and environmental aspects like greenhouse gas emissions (GHG) are the motivation for a detailed analysis of personal individual mobility in urban areas, which is presented in this study. In the first step, the publication examines a study of market potential of new small and lightweight vehicle concepts. A mobility inquiry conducted in a mid-sized European city enables an estimation of the potential user groups for alternative vehicle concepts for individual urban traffic. In a second step, the CO2 reduction potential of urban car concepts is simulated for a generic vehicle fleet. This fleet consists of conventional vehicles of various classes (subcompact, compact, mid-sized …) as well as new lightweight urban car concepts. A novel vehicle concept for urban transportation will be presented as well.
X