Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Simulation of the Dynamical Behavior of Elastic Multi-Body Systems with Bolted, Rough Contact Interfaces

2010-06-09
2010-01-1422
For many technical applications it is necessary to avoid or to reduce vibrations. Factors benefiting from vibration reduction are for example the durability of the application, which is increased, as well as cost expenses and the level of noise, which are both decreased. Rough, bolted interfaces are common in most machines and can be used as damping devices with some effort. Perhaps in future such contact surfaces could be used as damping devices at the interfaces of an automotive engine or exhaust system. Nevertheless it is difficult to predict the effect of a change in contact interface parameters on the dynamic behavior of the entire mechanical system. Therefore a method for calculating the steady state behavior of elastic multi-body systems was developed. The basis of this method is a finite element model of each contacting unit. On each model a modal reduction is applied in order to reduce the degrees of freedom.
Technical Paper

Application Limits of the Complex Eigenvalue Analysis for Low-Frequency Vibrations of Disk Brake Systems

2017-09-17
2017-01-2494
Complex Eigenvalue Analysis (CEA) is widely established as a mid- to high-frequency squeal simulation tool for automobile brake development. As low-frequency phenomena like creep groan or moan become increasingly important and appropriate time-domain methods are presently immature and expensive, some related questions arise: Is it reasonable to apply a CEA method for low-frequency brake vibrations? Which conditions in general have to be fulfilled to evaluate a disk brake system’s noise, vibration and harshness (NVH) behavior by the use of CEA simulation methods? Therefore, a breakdown of the mathematical CEA basis is performed and its linear, quasi-static approach is analyzed. The mode coupling type of instability, a common explanation model for squeal, is compared with the expected real world behavior of creep groan and moan phenomena.
Technical Paper

Systematic Experimental Creep Groan Characterization Using a Suspension and Brake Test Rig

2017-09-17
2017-01-2488
Vehicle road tests are meaningful for investigations of creep groan noise. However, problems in reproducing experiments and partly subjective evaluations may lead to imprecise conclusions. This work proposes an experimental test and evaluation procedure which provides a precise and objective assessment of creep groan. It is based on systematic corner test rig experiments and an innovative characterization method. The exemplary setup under investigation consisted of a complete front wheel suspension and brake system including all relevant components. The wheel has been driven by the test rig’s drum against a brake torque. The main parameters within a test matrix were brake pressure and drum velocity. Both have been varied stepwise to scan the relevant operating range of the automobile corner system for potential creep groan noise. Additionally, the experiments were extended to high brake pressures, where creep groan cannot be observed under road test conditions.
Technical Paper

Experimental Investigation of Low-Frequency Vibration Patterns in Automotive Disk Brake Systems: Utilization Study for Modal Simulation Methods

2018-06-13
2018-01-1513
Increasing demands on automotive comfort as well as diminishing vehicle noise levels draw new attention towards low-frequency vibration and noise issues of disk brake systems such as creep groan and moan. In view of this problem, the experimental investigation of relevant phenomena is within the scope of this article. The related experiments concerning two different setups have been performed at a drum driven suspension and brake test rig. Both assemblies consisted of a front axle corner including all parts of the integrated brake system. In order to gain understanding of characteristic triggering mechanisms and fundamental subsystem interactions, and moreover, to verify the suitability of modal methods for simulative evaluations of creep groan or moan, specifically elaborated Operating Deflection Shape (ODS) techniques have been applied. Via analyses of four different creep groan emergences, global stick-slip cycles between disk and pads are revealed.
Journal Article

Elaborate Measuring System for Sensitivity Analyses and In-Depth Investigations of a Squealing Brake System

2012-06-13
2012-01-1541
Brake squeal is an elusive problem which has been the subject of investigation for many decades, but there is still a lack of knowledge regarding the excitation mechanisms. New vehicle solutions, for instance the electrical vehicle, will have a lower general noise level. Thus, silent brake systems will gain in importance. To obtain such systems, in-depth investigations of the brake disc/pad contact are required. For these investigations a new sensor has been developed. The guide pins of the caliper are replaced by modified ones which measure the friction force. Additionally, eddy current sensors are installed for contact-free measurement of the pad movement. Furthermore, triaxial acceleration sensors are mounted in the disc vents. Thus, it is possible to evaluate the operational deflection shapes of the disc. Next, an extensive sensibility analysis is performed. Parameters such as environmental conditions, friction coefficient and many others are thereby changed.
Technical Paper

Comparing the NVH behaviour of an innovative steel-wood hybrid battery housing design to an all aluminium design

2024-06-12
2024-01-2949
The production of electric vehicles (EVs) has a significant environmental impact, with up to 50 % of their lifetime greenhouse gas potential attributed to manufacturing processes. The use of sustainable materials in EV design is therefore crucial for reducing their overall carbon footprint. Wood laminates have emerged as a promising alternative due to their renewable nature. Additionally, wood-based materials offer unique damping properties that can contribute to improved Noise, Vibration, and Harshness (NVH) characteristics. In comparison to conventional materials such as aluminum, ply wood structures exhibit beneficial damping properties. The loss factor of plywood structures with a thickness below 20 mm ranges from 0.013 to 0.032. Comparable aluminum structures however exhibit only a fraction of this loss factor with a range between 0.002 and 0.005.
Journal Article

Characterization of Brake Creep Groan Vibrations

2020-09-30
2020-01-1505
Creep groan is an annoying brake noise at very low speeds of the vehicle. In general, stick-slip between brake disk and brake pads is believed to be the most dominating vibration mechanism of creep groan phenomena. This paper will show by sophisticated measurement techniques that stick-slip and speed-dependent friction is an important trigger. However, the overall vibration is much more complex than stick-slip reproduced by simple conveying belt minimal models. It turns out that in typical brake systems of passenger cars, creep groan appears from 15 to 25 Hz as well as 60 to 100 Hz. The mechanism from 15 to 25 Hz is highly impulsive and “hard”. Transitions between stick and slip phases trigger coupled nonlinear vibrations of the complete brake and suspension system. From 60 to 100 Hz, the vibrations show a more harmonic-like and “soft” signature, caused mainly by a speed-dependent friction behavior.
X