Refine Your Search

Topic

Author

Search Results

Video

High Temperature Power Device and Packaging - The Technology Leap to Achieve Cost, Power Density and Reliability Target

2011-11-07
The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
Video

Supplier Discussions - 2012

2012-03-29
Trans Tech recently debuted the all-electric eTrans school bus providing a total zero emission school bus. The presentation will demonstrate Smith Electric Vehicles and their history with electric vehicles. The presentation will help ensure that everybody has an idea of what the electric school bus will do and to dispel any rumors about the vehicle. Presenter Brian S. Barrington, Trans Tech. Bus
Journal Article

Design Information Management of an On-Line Electric Vehicle Using Axiomatic Design

2010-04-12
2010-01-0279
Axiomatic design is utilized to identify the design characteristics of an On-Line Electric Vehicle and to manage the design information. The On-Line Electric Vehicle, which is being developed at the Korea Advanced Institute of Science and Technology, is a different concept of an electric vehicle from conventional electric vehicles which use the electric power of a charged battery(s). It is operated by an electric power supplied by the contactless power transmission technique between the roadway side and the vehicle. In other words, the power is transmitted based on the principle of an electric transformer. The On-Line Electric Vehicle can overcome the limitations of conventional electric vehicles such as the weight of the battery and driving distance problems. Because designers have little experience and knowledge about the On-Line Electric Vehicle in the developmental stage, an appropriate design guide is needed. The axiomatic approach is employed for the design process.
Journal Article

DSI3 Sensor to Master Decoder using Symbol Pattern Recognition

2014-04-01
2014-01-0252
The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines three modulation levels form which 16 valid symbols are coded. This complex structure is best decoded with symbol pattern recognition. This paper proposes a simplification of the correlation score calculation that sharply reduces the required number of operations. Additionally, the paper describes how the pattern recognition is achieved using correlation scores and a decoding algorithm. The performance of this method is demonstrated by mean of simulations with different load models between the master and the sensors and varying noise injection on the channel. We prove than the pattern recognition can decode symbols without any error for up to 24dBm.
Journal Article

GBit Ethernet - The Solution for Future In-Vehicle Network Requirements?

2015-04-14
2015-01-0200
In-vehicle communication faces increasing bandwidth demands, which can no longer be met by today's MOST150, FlexRay or CAN networks. In recent years, Fast Ethernet has gained a lot of momentum in the automotive world, because it promises to bridge the bandwidth gap. A first step in this direction is the introduction of Ethernet as an On Board Diagnostic (OBD) interface for production vehicles. The next potential use cases include the use of Ethernet in Driver Assistance Systems and in the infotainment domain. However, for many of these use cases, the Fast Ethernet solution is too slow to move the huge amount of data between the Domain Controllers, ADAS Systems, Safety Computer and Chassis Controller in an adequate way. The result is the urgent need for a network technology beyond the Fast Ethernet solution. The question is: which innovation will provide enough bandwidth for domain controllers, fast flashing routines, video data, MOST-replacement and internal ECU buses?
Technical Paper

Routing Methods Considering Security and Real-Time of Vehicle Gateway System

2020-04-14
2020-01-1294
Recently, vehicle networks have increased complexity due to the demand for autonomous driving or connected devices. This increasing complexity requires high bandwidth. As a result, vehicle manufacturers have begun using Ethernet-based communication for high-speed links. In order to deal with the heterogeneity of such networks where legacy automotive buses have to coexist with high-speed Ethernet links vehicle manufacturers introduced a vehicle gateway system. The system uses Ethernet as a backbone between domain controllers and CAN buses for communication between internal controllers. As a central point in the vehicle, the gateway is constantly exchanging vehicle data in a heterogeneous communication environment between the existing CAN and Ethernet networks. In an in-vehicle network context where the communications are strictly time-constrained, it is necessary to measure the delay for such routing task.
Journal Article

Markov Chain-based Reliability Analysis for Automotive Fail-Operational Systems

2017-03-28
2017-01-0052
A main challenge when developing next generation architectures for automated driving ECUs is to guarantee reliable functionality. Today’s fail safe systems will not be able to handle electronic failures due to the missing “mechanical” fallback or the intervening driver. This means, fail operational based on redundancy is an essential part for improving the functional safety, especially in safety-related braking and steering systems. The 2-out-of-2 Diagnostic Fail Safe (2oo2DFS) system is a promising approach to realize redundancy with manageable costs. In this contribution, we evaluate the reliability of this concept for a symmetric and an asymmetric Electronic Power Steering (EPS) ECU. For this, we use a Markov chain model as a typical method for analyzing the reliability and Mean Time To Failure (MTTF) in majority redundancy approaches. As a basis, the failure rates of the used components and the microcontroller are considered.
Journal Article

Lateral Control System for Autonomous Lane Change System on Highways

2016-04-05
2016-01-1641
In this paper, we propose a vision based lateral control scheme for autonomous lane change system on highways. Three main techniques are proposed, to improve the lane keeping/lane change performance, and to reduce the ripple in the yaw rate on highways. First, we propose a model based lane prediction method to cope with the momentary failure of lane detection. Second, we innovate an approach to steering wheel angle control based on torque overlay for the EPS of the lateral control. Finally, the multi-rate lane-keeping control scheme is proposed to improve the lateral control performance and to reduce the ripple in the yaw rate. The performance of the proposed method was experimentally evaluated via test vehicle
Journal Article

Smart Power Semiconductors - Repetitive Short Circuit Operation

2008-04-14
2008-01-0719
In addition to basic switching functionality, smart power switches mainly provide diagnostic and protection functions, e.g. for short circuits to the load, which makes it all the more surprising that short circuit protected smart switches have been used for years in automotive applications without there being a precise definition of a short circuit. This article describes what Infineon has done to fill this gap. It was first necessary to define the kind of short circuits likely to occur in automotive applications and to specify the use and operating points of the smart switches. The next logical step was the standardization of the test circuit and application conditions in the AEC (Automotive Electronics Council) to allow an industry-wide comparison of the test results.
Journal Article

Intelligent ECU End of Line Testing to Support ISO26262 Functional Safety Requirements

2013-04-08
2013-01-0403
The recent adoption of the ISO26262 Functional Safety Standard has lead to the need for a greater degree of rigor in the technical, organizational and process aspects of electronic ECU engineering. One new facet of this standard also covers (in part 9.7) the analysis of dependent failures at manufacturing time, not only the microcontroller, but also for the plethora of connected system ASICs, input circuits, output drivers and communication devices in the PCB of the ECU. This paper will describe the CAN based end of line ECU self test system that was implemented at a major tier 1 supplier to address the issues of efficiently gaining a high degree of diagnostic coverage of single point faults and latent faults in highly integrated automotive ECUs.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

Design and Structural Analysis of Bumper for Automobiles

1998-02-01
980114
An investigation has been performed to study the response of the front bumper beam of automobiles subjected to an external impact load. In the investigation, an aluminum shell structure is modeled as a beam, and the energy absorber of polyurethane is also modeled as statically equivalent springs attached to the beam. Castigliano's second theorem and principles of energy and momentum are then used to calculate the reaction forces and maximum deflection. Stress distribution is then calculated using the beam theory. The primary concern of the investigation is to present a procedure of how to design optimally the cross-sectional shape of the front bumper of automobiles.
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
Technical Paper

Design Considerations for Power Electronics in HEV Applications

2007-04-16
2007-01-0277
Today the majority of power electronics is developed based on the requirements set by the main fields of application e.g. power generation, power supply, industrial drive and traction. With introduction to automotive applications new requirements have to be taken into account. This paper discusses how interconnection technologies for power semiconductors can be improved to meet the demand for higher temperature capability in HEV applications.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Non-standard CAN Network Topologies Verification at High Speed Transmission Rate using VHDL-AMS

2010-04-12
2010-01-0688
This paper considers the verification of non-standard CAN network topologies of the physical layer at high speed transmission rate (500.0Kbps and 1.0Mbps). These network topologies including single star, multiple stars, and hybrid topologies (multiple stars in combination with linear bus or with ring topology) are simulated by using behavior modeling language (VHDL-AMS) in comparison to measurement. Throughout the verification process, CAN transceiver behavioral model together with other CAN physical layer simulation components have been proved to be very accurate. The modeling of measurement environment of the CAN network is discussed, showing how to get the measurement and simulation results well matched. This demonstrates that the simulation solution is reliable, which is highly desired and very important for the verification requirement in CAN physical layer design.
Technical Paper

ABS/ESC/EPB Control of Electronic Wedge Brake

2010-04-12
2010-01-0074
A new control algorithm of a wedge brake system has been developed. The proposed control algorithm is based on the position control and current control of electronic wedge brake(EWB). The EWB control system in rear wheel has both active braking functions like ABS and ESC and convenient function such as EPB. In this paper, development of control algorithm was performed using hybrid brake system(HBS) which consists of hydraulic brake in front wheel and electronic brake in rear wheel. At first, the configuration of EWB system is explained. Next, structure of electronic control in HBS is explained. And then ABS/ESC/EPB control algorithms are shown. ABS control algorithm has wheel slip calculation, wheel error calculation, wheel slip control, position control, current control, and duty control. ESC algorithm consists of yaw error calculation, yaw moment control, wheel slip control, position control, current control, and duty control.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

Smart IGBT's for Advanced Distributed Ignition Systems

2004-03-08
2004-01-0518
Driven by factors like consumption, power output per liter, comfort and more stringent exhaust gas standards the powertain control area, has developed rapidly in the last decades. This trend has also brought with it many innovations in the ignition application. Today we can see a trend to Pencil-coil or Plug-top-coil ignition systems. The next step in system partitioning is to remove the power driver from the ECU and place it directly in/on the coil body. The advantages of the new partitioning - e.g. no high voltage wires, reduced power dissipation on the ECU - are paid with different, mainly tougher requirements for the electronic components. By using specialized technologies for the different functions - IGBT for switching the power, SPT for protection, supply and diagnostics - in chip-on-chip technology all required functions for a decentralized ignition system can be realized in a TO220/ TO263 package.
X