Refine Your Search

Topic

Author

Search Results

Video

High Temperature Power Device and Packaging - The Technology Leap to Achieve Cost, Power Density and Reliability Target

2011-11-07
The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
Video

Supplier Discussions - 2012

2012-03-29
Seven different suppliers will discuss their latest technologies. Panelist Jon Bereisa, Auto Lectrification LLC John Burgers, Dana Canada Corporation Derek De Bono, Valeo Dusan Graovac, Infineon Technologies AG Ronald P. Krupitzer, American Iron and Steel Institute Timothy J. Lawler, Bosch Corp. Ian M. Sharp, Flybrid Systems LLP
Technical Paper

A throttle/brake control law for vehicle intelligent cruise control

2000-06-12
2000-05-0369
A throttle/brake control law for the intelligent cruise control (ICC) system has been proposed in this paper. The ICC system consists of a vehicle detection sensor, a controller and throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster (EVB) and a step-motor-controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were performed using a complete nonlinear vehicle model. The proposed control law in this paper consists of an algorithm that generates the desired acceleration/deceleration profile in an ICC situation, a throttle/brake switching logic and a throttle and brake control algorithm based on vehicle dynamics. The control performance has been investigated through computer simulations and experiments.
Technical Paper

Numerical analysis of light-off performance and thermo-fluid characteristics in a three-way monolithic catalytic converter

2000-06-12
2000-05-0310
Mathematical modeling of three-way catalytic converter (3WCC) operation is used increasingly in the optimization of automobile converter systems. But almost all of previous computational models were based on "adiabatic one- channel" approach with the reaction kinetics computations, which is useful and efficient in predicting real-world performance of the catalyst. However, as long as flow maldistribution is not accounted for in the models, simulation results will not be reliable. In this work, two-dimensional performance prediction of catalyst coupled with turbulent reacting flow simulation has been performed and the results were compared with experimental data and one-channel simulation in the literature. The computational results from this study show the better prediction accuracy in terms of CO, HC and NO conversion efficiencies compared to those of 1-D adiabatic model. Varying cell density and hot spot moving pattern within the monolith during warm-up period are also considered.
Journal Article

Intelligent ECU End of Line Testing to Support ISO26262 Functional Safety Requirements

2013-04-08
2013-01-0403
The recent adoption of the ISO26262 Functional Safety Standard has lead to the need for a greater degree of rigor in the technical, organizational and process aspects of electronic ECU engineering. One new facet of this standard also covers (in part 9.7) the analysis of dependent failures at manufacturing time, not only the microcontroller, but also for the plethora of connected system ASICs, input circuits, output drivers and communication devices in the PCB of the ECU. This paper will describe the CAN based end of line ECU self test system that was implemented at a major tier 1 supplier to address the issues of efficiently gaining a high degree of diagnostic coverage of single point faults and latent faults in highly integrated automotive ECUs.
Journal Article

Design Information Management of an On-Line Electric Vehicle Using Axiomatic Design

2010-04-12
2010-01-0279
Axiomatic design is utilized to identify the design characteristics of an On-Line Electric Vehicle and to manage the design information. The On-Line Electric Vehicle, which is being developed at the Korea Advanced Institute of Science and Technology, is a different concept of an electric vehicle from conventional electric vehicles which use the electric power of a charged battery(s). It is operated by an electric power supplied by the contactless power transmission technique between the roadway side and the vehicle. In other words, the power is transmitted based on the principle of an electric transformer. The On-Line Electric Vehicle can overcome the limitations of conventional electric vehicles such as the weight of the battery and driving distance problems. Because designers have little experience and knowledge about the On-Line Electric Vehicle in the developmental stage, an appropriate design guide is needed. The axiomatic approach is employed for the design process.
Technical Paper

ABS/ESC/EPB Control of Electronic Wedge Brake

2010-04-12
2010-01-0074
A new control algorithm of a wedge brake system has been developed. The proposed control algorithm is based on the position control and current control of electronic wedge brake(EWB). The EWB control system in rear wheel has both active braking functions like ABS and ESC and convenient function such as EPB. In this paper, development of control algorithm was performed using hybrid brake system(HBS) which consists of hydraulic brake in front wheel and electronic brake in rear wheel. At first, the configuration of EWB system is explained. Next, structure of electronic control in HBS is explained. And then ABS/ESC/EPB control algorithms are shown. ABS control algorithm has wheel slip calculation, wheel error calculation, wheel slip control, position control, current control, and duty control. ESC algorithm consists of yaw error calculation, yaw moment control, wheel slip control, position control, current control, and duty control.
Technical Paper

Timing Analysis and Tracing Concepts for ECU Development

2014-04-01
2014-01-0190
Integration scenarios for ECU software become more complicated, as more constraints with regards to timing, safety and security need to be considered. Multi-core microcontrollers offer even more hardware potential for integration scenarios. To tackle the complexity, more and more model based approaches are used. Understanding the interaction between the different software components, not only from a functional but also from a timing view, is a key success factor for high integration scenarios. In particular for multi-core systems, an amazing amount of timing data can be generated. Usually a multi-core system handles more software functionality than a single-core system. Furthermore, there may be timing interference on the multicore systems, due to the shared usage of buses, memory banks or other hardware resources.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Technical Paper

μAFS High Resolution ADB/AFS Solution

2016-04-05
2016-01-1410
A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

Smart IGBT's for Advanced Distributed Ignition Systems

2004-03-08
2004-01-0518
Driven by factors like consumption, power output per liter, comfort and more stringent exhaust gas standards the powertain control area, has developed rapidly in the last decades. This trend has also brought with it many innovations in the ignition application. Today we can see a trend to Pencil-coil or Plug-top-coil ignition systems. The next step in system partitioning is to remove the power driver from the ECU and place it directly in/on the coil body. The advantages of the new partitioning - e.g. no high voltage wires, reduced power dissipation on the ECU - are paid with different, mainly tougher requirements for the electronic components. By using specialized technologies for the different functions - IGBT for switching the power, SPT for protection, supply and diagnostics - in chip-on-chip technology all required functions for a decentralized ignition system can be realized in a TO220/ TO263 package.
Technical Paper

Seamless Solution for Electronic Power Steering

2006-04-03
2006-01-0593
The number of safety critical automotive applications employing high current brushless motors continues to increase (Steering, Braking, and Transmission etc.). There are many benefits when moving from traditional solutions to electrically actuated solutions. Some of these benefits can include increased fuel economy, simplified vehicle installation and packaging, increased feature set, improved safety and/or convenience, simplified unit assembly and modular testability prior as well as during vehicle manufacturing. The trend to implement brushless motors in these applications (which require electronically controlled commutation) has also brought with it the need for powerful inverters, which primarily consist of Power MOSFETs and MOSFET Driver ICs. This paper reviews the challenges associated with the design of safety critical electronic systems which combine sensing, control and actuation.
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
Technical Paper

Design Considerations for Power Electronics in HEV Applications

2007-04-16
2007-01-0277
Today the majority of power electronics is developed based on the requirements set by the main fields of application e.g. power generation, power supply, industrial drive and traction. With introduction to automotive applications new requirements have to be taken into account. This paper discusses how interconnection technologies for power semiconductors can be improved to meet the demand for higher temperature capability in HEV applications.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Cost Efficient Integration for Decentralized Automotive ECU

2004-03-08
2004-01-0717
As the demand for enhanced comfort, safety and differentiation with new features continues to grow and as electronics and software enable most of these, the number of electronic units or components within automobiles will continue to increase. This will increase the overall system complexity, specifically with respect to the number of controller actuators such as e-motors. However, hard constraints on cost and on physical boundaries such as maximum power dissipation per unit and pin-count per unit/connector require new solutions to alternative system partitioning. Vehicle manufacturers, as well as system and semiconductor suppliers are striving for increased scalability and modularity to allow for most cost optimal high volume configurations while featuring platform reuse and feature differentiation. This paper presents new semiconductor based approaches with respect to technologies, technology mapping and assembly technologies.
Technical Paper

Innovative Chip Set for Pressure and Acceleration Based Airbag Solutions

2004-03-08
2004-01-0846
More and more passenger cars are equipped with passive side protection systems such as thorax airbags for front and rear passengers. In the past, side airbag protection systems used sensors based on acceleration measurements [1]. In the meantime different sensor principles have been tested in order to increase the performance of this application. The intention has been to achieve faster firing decisions and to decrease the misuse risk for a floor or chassis impact. This paper presents the partitioning of an advanced chipset for pressure and acceleration based airbag systems. It shows the communication link between the sensors, the receiver-IC and other blocks in the application.
Technical Paper

Motor Control in Auxiliary Drive Systems How to Choose the Best Fitting Electronic Solution

2014-04-01
2014-01-0323
In modern vehicles, the number of small electrical drive systems is still increasing continuously for blowers, fans and pumps as well as for window lifts, sunroofs and doors. Requirements and operating conditions for such systems varies, hence there are many different solutions available for controlling such motors. In most applications, simple, low-cost DC motors are used. For higher requirements regarding operating time and in stop-start capable systems, the focus turns to highly efficient and durable brushless DC motors with electronic commutation. This paper compares various electronic control concepts from a semiconductor vendor point of view. These concepts include discrete control using relays or MOSFETs. Furthermore integrated motor drivers are discussed, including system-on-chip solutions for specific applications, e.g. specific ICs for window lift motors with LIN interface.
Technical Paper

Sensor Fusion-Based Parking Assist System

2014-04-01
2014-01-0327
This paper proposes a parking assist system that fuses around view monitor (AVM) image, ultrasonic sensor, and in-vehicle motion sensor. The proposed system recognizes various types of parking slot markings using AVM image sequences and classifies occupancies of the detected parking slots using ultrasonic sensors. Once a desirable parking slot is selected by a driver, its position is continuously tracked by fusing AVM images and motion sensor-based odometry. Experimental results show that the proposed system can reliably detect and track various types of parking slot markings.
X