Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Model-Based Technique for Air-Intake-System Control Using Thermo-Fluid Dynamic Simulation of SI Engines and Multiple-Objective Optimization

2011-10-06
2011-28-0119
We have developed a model-based control for the air intake system in a variable valve engine, employing total engine simulation, the response surface method and multi-objective optimization scheme. In our technique, we performed the simulation model tuning and validation, followed by the creation of a dataset for the polynomial regression analysis of the charging efficiency. A D-optimal design, robust least squares method, and likelihood-ratio test were demonstrated to yield a robust and accurate control model. Coupling the total engine simulator with a genetic algorithm, model based calibration for optimal valve timing stored in lookup table was carried out under multiple objectives and restrictions. The reliability of the implementation control model, which considers the effect of gas dynamics in the intake system, was confirmed using a model-in-the-loop simulation.
Technical Paper

Model-Based Methodology for Air Charge Estimation and Control in Turbocharged Engines

2013-04-08
2013-01-1754
The purpose of this study is to develop model-based methodologies which employ thermo-fluid dynamic engine simulation and multiple-objective optimization schemes for engine control and calibration, and to validate the reliability of the method using a dynamometer test. In our technique, creating a total engine system model begins by first entirely capturing the characteristics of the components affecting the engine system's behavior, then using experimental data to strictly adjust the tuning parameters in physical models. Engine outputs over the full range of engine operation conditions as determined by design of experiment (DOE) are simulated, followed by fitting the provided dataset using a nonlinear response surface model (RSM) to express the causal relationship among engine operational parameters, environmental factors and engine output. The RSM is applied to an L-jetronic® air-intake system control logic for a turbocharged engine.
X