Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Safety Concept based on a Safety Sustainer for Highly Automated Driving Systems

Highly automated driving systems have a responsibility to keep a vehicle safe even in abnormal conditions such as random or systematic failures. However, creating redundancy in a system to respond to failures increases the cost of the system, and simple redundancy cannot detect systematic failures because some systematic failures occur in each system at the same time. Systematic failures in automated driving systems cannot be verified sufficiently during the development phase due to numerous patterns of parameters input from outside the system. A safety concept based on a “safety sustainer” for highly automated driving systems is proposed. The safety sustainer is designed for keeping a vehicle in a safe state for several seconds if a failure occurs in the system and notifying the driver that the system is in failure mode and requesting the driver to take over control of the vehicle.
Technical Paper

Virtual FMEA : Simulation-Based ECU Electrical Failure Mode and Effects Analysis

“Virtual Failure Mode and Effects Analysis” (vFMEA), a novel safety-verification method of control software for automotive electronic systems, was proposed to save prototyping cost at verification stage. The proposed vFMEA is system-level FMEA method, which uses virtualized electronic control units (ECUs) consisting of microcontroller models on a microcontroller simulator and a transistor-level circuit models on a circuit simulator. By using the structure, the control software in binary code formats can be verified when a circuit-level fault occurs in the ECU hardware. As an illustrative example, vFMEA was applied to an engine ECU. As a result of short-circuit fault into a driver IC, engine revolution and engine speed decreased. However, the engine continued to operate normally when an open-circuit fault occurred in a capacitor connected in parallel. Effects of the hardware faults in ECU on a vehicle are demonstrated; thereby software verification can be performed using vFMEA system.
Technical Paper

Virtual FMEA and Its Application to Software Verification of Electric Power Steering System

This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.